Cargando…
Empirical Bayes Estimation of Semi-parametric Hierarchical Mixture Models for Unbiased Characterization of Polygenic Disease Architectures
Genome-wide association studies (GWAS) suggest that the genetic architecture of complex diseases consists of unexpectedly numerous variants with small effect sizes. However, the polygenic architectures of many diseases have not been well characterized due to lack of simple and fast methods for unbia...
Autores principales: | Nishino, Jo, Kochi, Yuta, Shigemizu, Daichi, Kato, Mamoru, Ikari, Katsunori, Ochi, Hidenori, Noma, Hisashi, Matsui, Kota, Morizono, Takashi, Boroevich, Keith A., Tsunoda, Tatsuhiko, Matsui, Shigeyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928254/ https://www.ncbi.nlm.nih.gov/pubmed/29740473 http://dx.doi.org/10.3389/fgene.2018.00115 |
Ejemplares similares
-
Sample Size for Successful Genome-Wide Association Study of Major Depressive Disorder
por: Nishino, Jo, et al.
Publicado: (2018) -
Semi-parametric empirical Bayes factor for genome-wide association studies
por: Morisawa, Junji, et al.
Publicado: (2021) -
Performance comparison of four commercial human whole-exome capture platforms
por: Shigemizu, Daichi, et al.
Publicado: (2015) -
DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture
por: Sharma, Alok, et al.
Publicado: (2019) -
An Empirical Bayes Optimal Discovery Procedure Based on Semiparametric Hierarchical Mixture Models
por: Noma, Hisashi, et al.
Publicado: (2013)