Cargando…
Tracking the NGS revolution: managing life science research on shared high-performance computing clusters
BACKGROUND: Next-generation sequencing (NGS) has transformed the life sciences, and many research groups are newly dependent upon computer clusters to store and analyze large datasets. This creates challenges for e-infrastructures accustomed to hosting computationally mature research in other scienc...
Autores principales: | Dahlö, Martin, Scofield, Douglas G, Schaal, Wesley, Spjuth, Ola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928410/ https://www.ncbi.nlm.nih.gov/pubmed/29659792 http://dx.doi.org/10.1093/gigascience/giy028 |
Ejemplares similares
-
BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences
por: Dahlö, Martin, et al.
Publicado: (2015) -
SciPipe: A workflow library for agile development of complex and dynamic bioinformatics pipelines
por: Lampa, Samuel, et al.
Publicado: (2019) -
MaRe: Processing Big Data with application containers on Apache Spark
por: Capuccini, Marco, et al.
Publicado: (2020) -
Predicting protein network topology clusters from chemical structure using deep learning
por: Sreenivasan, Akshai P., et al.
Publicado: (2022) -
Lessons learned from implementing a national infrastructure in Sweden for storage and analysis of next-generation sequencing data
por: Lampa, Samuel, et al.
Publicado: (2013)