Cargando…
Analysis of Longitudinal Studies With Repeated Outcome Measures: Adjusting for Time-Dependent Confounding Using Conventional Methods
Estimation of causal effects of time-varying exposures using longitudinal data is a common problem in epidemiology. When there are time-varying confounders, which may include past outcomes, affected by prior exposure, standard regression methods can lead to bias. Methods such as inverse probability...
Autores principales: | Keogh, Ruth H, Daniel, Rhian M, VanderWeele, Tyler J, Vansteelandt, Stijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928464/ https://www.ncbi.nlm.nih.gov/pubmed/29020128 http://dx.doi.org/10.1093/aje/kwx311 |
Ejemplares similares
-
Adjusting for time‐varying confounders in survival analysis using structural nested cumulative survival time models
por: Seaman, Shaun, et al.
Publicado: (2019) -
Principles of confounder selection
por: VanderWeele, Tyler J.
Publicado: (2019) -
A statistical test to reject the structural interpretation of a latent factor model
por: VanderWeele, Tyler J., et al.
Publicado: (2022) -
Sensitivity Analysis for Unmeasured Confounding in Meta-Analyses
por: Mathur, Maya B., et al.
Publicado: (2019) -
Constructed Measures and Causal Inference: Towards a New Model of Measurement for Psychosocial Constructs
por: VanderWeele, Tyler J.
Publicado: (2021)