Cargando…

Expression profiles of long noncoding RNAs and mRNAs in post-cardiac arrest rat brains

To investigate long noncoding (lnc)-RNA and mRNA expression profiles in post-cardiac arrest (CA) brains, an external transthoracic electrical current was applied for 8 min to induce CA (the CA group). A total of 4 rats received sham-operations and served as the blank control (BC) group. Upon return...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Rong, Liao, Xiaoxing, Li, Xin, Wei, Hongyan, Liang, Qing, Zhang, Zuopeng, Yin, Meixian, Zeng, Xiaoyun, Liang, Zijing, Hu, Chunlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928618/
https://www.ncbi.nlm.nih.gov/pubmed/29512756
http://dx.doi.org/10.3892/mmr.2018.8703
Descripción
Sumario:To investigate long noncoding (lnc)-RNA and mRNA expression profiles in post-cardiac arrest (CA) brains, an external transthoracic electrical current was applied for 8 min to induce CA (the CA group). A total of 4 rats received sham-operations and served as the blank control (BC) group. Upon return of spontaneous circulation (ROSC), lncRNA and mRNA expression in the rat cerebral cortex was assayed with high-throughput Agilent lncRNA and mRNA microarrays. In total, 37 lncRNAs were upregulated and 21 lncRNAs were downregulated in the CA group, and 258 mRNA transcripts were differentially expressed with 177 mRNAs upregulated and 81 mRNAs downregulated in the CA group. The differentially expressed lncRNAs in the CA group were co-expressed with thousands of mRNAs. The differentially expressed lncRNAs could be clustered into >100 signaling pathways and processes according to Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses. The most common predicted functions involved metabolic pathways, protein synthesis, transport and degradation during CA-ROSC. CA-ROSC led to significant alterations in cerebral lncRNA and mRNA expression profiles. Thus, lncRNA-mRNA network interactions have the potential to regulate vital metabolic pathways and processes involved in CA-ROSC.