Cargando…

Isoflurane reduces pain and inhibits apoptosis of myocardial cells through the phosphoinositide 3-kinase/protein kinase B signaling pathway in mice during cardiac surgery

Heart bypass surgery is the most common treatment for myocardial ischemia. Clinical investigations have revealed that isoflurane anesthesia is efficient to alleviate pain during cardiac surgery, including heart bypass surgery. Previous studies have revealed the protective effects of isoflurane on my...

Descripción completa

Detalles Bibliográficos
Autores principales: Pi, Zhibing, Lin, Hai, Yang, Jianping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928630/
https://www.ncbi.nlm.nih.gov/pubmed/29488606
http://dx.doi.org/10.3892/mmr.2018.8642
Descripción
Sumario:Heart bypass surgery is the most common treatment for myocardial ischemia. Clinical investigations have revealed that isoflurane anesthesia is efficient to alleviate pain during cardiac surgery, including heart bypass surgery. Previous studies have revealed the protective effects of isoflurane on myocardial cells of patients with myocardial ischemia during the perioperative period. The present study aimed to investigate the mechanism underlying the protective effects of isoflurane on myocardial cells in mice with myocardial ischemia. ELISA, flow cytometry, immunofluorescence and western blotting were used to analyze the effects of isoflurane anesthesia on myocardial cells. Briefly, myocardial cell apoptosis and viability, pain, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway expression and the pharmacodynamics of isoflurane were studied in mice treated with isoflurane for heart bypass surgery. The results demonstrated that isoflurane anesthesia efficiently attenuated pain in mice during surgery. Viability and apoptosis of myocardial cells was also improved by isoflurane in vitro and in vivo. The PI3K/AKT pathway was upregulated in myocardial cells on day 3 post-operation. Mechanistically, isoflurane promoted PI3K/AKT activation, upregulated B-cell lymphoma 2 (Bcl-2)-associated X protein and Bcl-2 expression levels, and reduced the expression levels of caspase-3 and caspase-8 in myocardial cells. In conclusion, the findings indicated that isoflurane is beneficial for pain attenuation and inhibits apoptosis of myocardial cells via the PI3K/AKT signaling pathway in mice during cardiac surgery.