Cargando…

Low molecular weight fucoidan attenuates experimental abdominal aortic aneurysm through interfering the leukocyte-endothelial cells interaction

Low molecular weight fucoidan (LMWF) is a sulfated polysaccharide extracted from Saccharina Japonica that presents high affinity for P-selectin and abolish selectin-dependent recruitment of leukocytes. We hypothesized that dietary intake of LMWF, as a competitive binding agent of P-selectin, could l...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Min, Ding, Yong, Cai, Liang, Wang, Yonggang, Lin, Changpo, Shi, Zhenyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928669/
https://www.ncbi.nlm.nih.gov/pubmed/29568947
http://dx.doi.org/10.3892/mmr.2018.8765
Descripción
Sumario:Low molecular weight fucoidan (LMWF) is a sulfated polysaccharide extracted from Saccharina Japonica that presents high affinity for P-selectin and abolish selectin-dependent recruitment of leukocytes. We hypothesized that dietary intake of LMWF, as a competitive binding agent of P-selectin, could limit the inflammatory infiltration and aneurysmal growth in an Angiotensin II-induced abdominal aortic aneurysm (AAA) mouse model. The Gene Expression Omnibus database was used for gene expressions and gene set enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that focal adhesion was involved in the development of AAA. However, dietary intake of LMWF could limit the enlargement of AAA, decreasing maximal aortic diameter and preserving elastin lamellae. Although LMWF did not decrease the circulatory monocytes count and lower the expression of P-selectin in endothelium, it reduced macrophages infiltration in media and adventitia. Furthermore, matrix metalloproteinase expression was markedly downregulated, accompanied with reduced expression of inflammatory mediators, including interleukin 1β, tumor necrosis factor-α and monocyte chemotactic protein-1. The present study revealed a novel target for the treatment of AAA and the anti-inflammatory effects of LMWF.