Cargando…
High-Discrimination Factor Nanosensor Based on Tetrahedral DNA Nanostructures and Gold Nanoparticles for Detection of MiRNA-21 in Live Cells
While detection of microRNA with or without signal amplification is highly informative, nanosensors with high specificity for cell-specific RNA detection are rare. Methods: In this study, a tetrahedral DNA nanostructure (TDN) with a specific function was combined with gold nanoparticles (Au-NP) poss...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928899/ https://www.ncbi.nlm.nih.gov/pubmed/29721089 http://dx.doi.org/10.7150/thno.23852 |
_version_ | 1783319317510619136 |
---|---|
author | Bai, Shulian Xu, Bangtian Guo, Yongcan Qiu, Juhui Yu, Wen Xie, Guoming |
author_facet | Bai, Shulian Xu, Bangtian Guo, Yongcan Qiu, Juhui Yu, Wen Xie, Guoming |
author_sort | Bai, Shulian |
collection | PubMed |
description | While detection of microRNA with or without signal amplification is highly informative, nanosensors with high specificity for cell-specific RNA detection are rare. Methods: In this study, a tetrahedral DNA nanostructure (TDN) with a specific function was combined with gold nanoparticles (Au-NP) possessing fluorescence quenching effects and a large surface area to fabricate a fluorescence resonance energy transfer based nanosensor (Au-TDNN). The presence of miR-21 (target) can separate the fluorescent dye-labeled detection probe on Au-TDNNs from Au-NPs, which separates the donor and acceptor, thus inducing an intensive fluorescence signal. High specificity for discerning point mutation targets was achieved by rationally designing the nucleic acid strand displacement reaction to occur spontaneously with ΔG(0) ≈ 0 based on thermodynamic parameters; under this condition, slight thermodynamic changes caused by base mismatch exert significant effects on hybridization yield. Results: Chemically synthesized DNA of three single-base-changed analogues of target, let-7d, and miR-200b were tested. A discrimination factor (DF) of 15.4 was produced by the expected detection probe on Au-NPs for proximal single-base mismatch. As the control group, the DF produced by an ordinary detection probe on Au-NPs only reached 2.4. The feasibility of the proposed strategy was also confirmed using hepatocyte cancer cells (HepG2). Conclusion: This improved nanosensor opens a new avenue for the specific and easy detection of microRNA in live cells. |
format | Online Article Text |
id | pubmed-5928899 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-59288992018-05-02 High-Discrimination Factor Nanosensor Based on Tetrahedral DNA Nanostructures and Gold Nanoparticles for Detection of MiRNA-21 in Live Cells Bai, Shulian Xu, Bangtian Guo, Yongcan Qiu, Juhui Yu, Wen Xie, Guoming Theranostics Research Paper While detection of microRNA with or without signal amplification is highly informative, nanosensors with high specificity for cell-specific RNA detection are rare. Methods: In this study, a tetrahedral DNA nanostructure (TDN) with a specific function was combined with gold nanoparticles (Au-NP) possessing fluorescence quenching effects and a large surface area to fabricate a fluorescence resonance energy transfer based nanosensor (Au-TDNN). The presence of miR-21 (target) can separate the fluorescent dye-labeled detection probe on Au-TDNNs from Au-NPs, which separates the donor and acceptor, thus inducing an intensive fluorescence signal. High specificity for discerning point mutation targets was achieved by rationally designing the nucleic acid strand displacement reaction to occur spontaneously with ΔG(0) ≈ 0 based on thermodynamic parameters; under this condition, slight thermodynamic changes caused by base mismatch exert significant effects on hybridization yield. Results: Chemically synthesized DNA of three single-base-changed analogues of target, let-7d, and miR-200b were tested. A discrimination factor (DF) of 15.4 was produced by the expected detection probe on Au-NPs for proximal single-base mismatch. As the control group, the DF produced by an ordinary detection probe on Au-NPs only reached 2.4. The feasibility of the proposed strategy was also confirmed using hepatocyte cancer cells (HepG2). Conclusion: This improved nanosensor opens a new avenue for the specific and easy detection of microRNA in live cells. Ivyspring International Publisher 2018-03-27 /pmc/articles/PMC5928899/ /pubmed/29721089 http://dx.doi.org/10.7150/thno.23852 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Bai, Shulian Xu, Bangtian Guo, Yongcan Qiu, Juhui Yu, Wen Xie, Guoming High-Discrimination Factor Nanosensor Based on Tetrahedral DNA Nanostructures and Gold Nanoparticles for Detection of MiRNA-21 in Live Cells |
title | High-Discrimination Factor Nanosensor Based on Tetrahedral DNA Nanostructures and Gold Nanoparticles for Detection of MiRNA-21 in Live Cells |
title_full | High-Discrimination Factor Nanosensor Based on Tetrahedral DNA Nanostructures and Gold Nanoparticles for Detection of MiRNA-21 in Live Cells |
title_fullStr | High-Discrimination Factor Nanosensor Based on Tetrahedral DNA Nanostructures and Gold Nanoparticles for Detection of MiRNA-21 in Live Cells |
title_full_unstemmed | High-Discrimination Factor Nanosensor Based on Tetrahedral DNA Nanostructures and Gold Nanoparticles for Detection of MiRNA-21 in Live Cells |
title_short | High-Discrimination Factor Nanosensor Based on Tetrahedral DNA Nanostructures and Gold Nanoparticles for Detection of MiRNA-21 in Live Cells |
title_sort | high-discrimination factor nanosensor based on tetrahedral dna nanostructures and gold nanoparticles for detection of mirna-21 in live cells |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928899/ https://www.ncbi.nlm.nih.gov/pubmed/29721089 http://dx.doi.org/10.7150/thno.23852 |
work_keys_str_mv | AT baishulian highdiscriminationfactornanosensorbasedontetrahedraldnananostructuresandgoldnanoparticlesfordetectionofmirna21inlivecells AT xubangtian highdiscriminationfactornanosensorbasedontetrahedraldnananostructuresandgoldnanoparticlesfordetectionofmirna21inlivecells AT guoyongcan highdiscriminationfactornanosensorbasedontetrahedraldnananostructuresandgoldnanoparticlesfordetectionofmirna21inlivecells AT qiujuhui highdiscriminationfactornanosensorbasedontetrahedraldnananostructuresandgoldnanoparticlesfordetectionofmirna21inlivecells AT yuwen highdiscriminationfactornanosensorbasedontetrahedraldnananostructuresandgoldnanoparticlesfordetectionofmirna21inlivecells AT xieguoming highdiscriminationfactornanosensorbasedontetrahedraldnananostructuresandgoldnanoparticlesfordetectionofmirna21inlivecells |