Cargando…

Programmed death-ligand 1 expression by digital image analysis advances thyroid cancer diagnosis among encapsulated follicular lesions

Recognition of noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) that distinguishes them from invasive malignant encapsulated follicular variant of papillary thyroid carcinoma (EFVPTC) can prevent overtreatment of NIFTP patients. We and others have previously repo...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsieh, Anne M.-Y., Polyakova, Olena, Fu, Guodong, Chazen, Ronald S., MacMillan, Christina, Witterick, Ian J., Ralhan, Ranju, Walfish, Paul G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5929424/
https://www.ncbi.nlm.nih.gov/pubmed/29731981
http://dx.doi.org/10.18632/oncotarget.24833
Descripción
Sumario:Recognition of noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) that distinguishes them from invasive malignant encapsulated follicular variant of papillary thyroid carcinoma (EFVPTC) can prevent overtreatment of NIFTP patients. We and others have previously reported that programmed death-ligand 1 (PD-L1) is a useful biomarker in thyroid tumors; however, all reports to date have relied on manual scoring that is time consuming as well as subject to individual bias. Consequently, we developed a digital image analysis (DIA) protocol for cytoplasmic and membranous stain quantitation (ThyApp) and evaluated three tumor sampling methods [Systemic Uniform Random Sampling, hotspot nucleus, and hotspot nucleus/3,3′-Diaminobenzidine (DAB)]. A patient cohort of 153 cases consisting of 48 NIFTP, 44 EFVPTC, 26 benign nodules and 35 encapsulated follicular lesions/neoplasms with lymphocytic thyroiditis (LT) was studied. ThyApp quantitation of PD-L1 expression revealed a significant difference between invasive EFVPTC and NIFTP; but none between NIFTP and benign nodules. ThyApp integrated with hotspot nucleus tumor sampling method demonstrated to be most clinically relevant, consumed least processing time, and eliminated interobserver variance. In conclusion, the fully automatic DIA algorithm developed using a histomorphological approach objectively quantitated PD-L1 expression in encapsulated thyroid neoplasms and outperformed manual scoring in reproducibility and higher efficiency.