Cargando…

Over-activation of AKT signaling leading to 5-Fluorouracil resistance in SNU-C5/5-FU cells

Here, we investigated whether over-activation of AKT pathway is important in the resistance to 5-fluorouracil (5-FU) in SNU-C5/5-FU cells, 5-FU-resistant human colon cancer cells. When compared to wild type SNU-C5 cells (WT), SNU-C5/5-FU cells showed over-activation of PI3K/AKT pathway, like increas...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Eun-Ji, Kang, Gyeoung-Jin, Kang, Jung-Il, Boo, Hye-Jin, Hyun, Jin Won, Koh, Young Sang, Chang, Weon-Young, Kim, Young Ree, Kwon, Jung-Mi, Maeng, Young Hee, Yoo, Eun-Sook, Lee, Chang Hoon, Kang, Hee-Kyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5929436/
https://www.ncbi.nlm.nih.gov/pubmed/29731993
http://dx.doi.org/10.18632/oncotarget.24952
Descripción
Sumario:Here, we investigated whether over-activation of AKT pathway is important in the resistance to 5-fluorouracil (5-FU) in SNU-C5/5-FU cells, 5-FU-resistant human colon cancer cells. When compared to wild type SNU-C5 cells (WT), SNU-C5/5-FU cells showed over-activation of PI3K/AKT pathway, like increased phosphorylation of AKT, mTOR, and GSK-3β, nuclear localization of β-catenin, and decreased E-cadherin. Moreover, E-cadherin level was down-regulated in recurrent colon cancer tissues compared to primary colon cancer tissues. Gene silencing of AKT1 or treatment of LY294002 (PI3 kinase inhibitor) increased E-cadherin, whereas decreased phospho-GSK-3β. LY294002 also reduced protein level of β-catenin with no influence on mRNA level. PTEN level was higher in SNU-C5/WT than SNU-C5/5-FU cells, whereas the loss of PETN in SNU-C5/WT cells induced characteristics of SNU-C5/5-FU cells. In SNU-C5/5-FU cells, NF-κB signaling was activated, along with the overexpression of COX-2 and stabilization of survivin. However, increased COX-2 contributed to the stabilization of survivin, which directly interacts with cytoplasmic procaspase-3, while the inhibition of AKT reduced this cascade. We finally confirmed that combination treatment with 5-FU and LY294002 or Vioxx could induce apoptosis in SNU-C5/5-FU cells. These data suggest that inhibition of AKT activation may overcome 5-FU-resistance in SNU-C5/5-FU cells. These findings provide evidence that over-activation of AKT is crucial for the acquisition of resistance to anticancer drugs and AKT pathway could be a therapeutic target for cancer treatment.