Cargando…
Compositional clustering in task structure learning
Humans are remarkably adept at generalizing knowledge between experiences in a way that can be difficult for computers. Often, this entails generalizing constituent pieces of experiences that do not fully overlap, but nonetheless share useful similarities with, previously acquired knowledge. However...
Autores principales: | Franklin, Nicholas T., Frank, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5929577/ https://www.ncbi.nlm.nih.gov/pubmed/29672581 http://dx.doi.org/10.1371/journal.pcbi.1006116 |
Ejemplares similares
-
Generalizing to generalize: Humans flexibly switch between compositional and conjunctive structures during reinforcement learning
por: Franklin, Nicholas T., et al.
Publicado: (2020) -
Clustered Multi-Task Learning for Automatic Radar Target Recognition
por: Li, Cong, et al.
Publicado: (2017) -
Structure Learning in a Sensorimotor Association Task
por: Braun, Daniel A., et al.
Publicado: (2010) -
Learning the Abstract General Task Structure in a Rapidly Changing Task Content
por: Pereg, Maayan, et al.
Publicado: (2021) -
Reward-predictive representations generalize across tasks in reinforcement learning
por: Lehnert, Lucas, et al.
Publicado: (2020)