Cargando…
Comparison of two integration methods for dynamic causal modeling of electrophysiological data
Dynamic causal modeling (DCM) is a methodological approach to study effective connectivity among brain regions. Based on a set of observations and a biophysical model of brain interactions, DCM uses a Bayesian framework to estimate the posterior distribution of the free parameters of the model (e.g....
Autores principales: | Lemaréchal, Jean-Didier, George, Nathalie, David, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5929904/ https://www.ncbi.nlm.nih.gov/pubmed/29462723 http://dx.doi.org/10.1016/j.neuroimage.2018.02.031 |
Ejemplares similares
-
Oscillatory Brain Correlates of Live Joint Attention: A Dual-EEG Study
por: Lachat, Fanny, et al.
Publicado: (2012) -
Causal models and causal modelling in obesity: foundations, methods and evidence
por: Zoh, Roger S., et al.
Publicado: (2023) -
An introduction to thermodynamic integration and application to dynamic causal models
por: Aponte, Eduardo A., et al.
Publicado: (2021) -
Integrated platform and API for electrophysiological data
por: Sobolev, Andrey, et al.
Publicado: (2014) -
Behavioral Evidence for Differences in Social and Non-Social Category Learning
por: Gamond, Lucile, et al.
Publicado: (2012)