Cargando…

Quantitative Self-Assembly Prediction Yields Targeted Nanomedicines

Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. Until recently, these processes were generally difficult to predict, execute, and control. We describe herein a targeted drug delivery sy...

Descripción completa

Detalles Bibliográficos
Autores principales: Shamay, Yosi, Shah, Janki, Işık, Mehtap, Mizrachi, Aviram, Leibold, Josef, Tschaharganeh, Darjus F., Roxbury, Daniel, Budhathoki-Uprety, Januka, Nawaly, Karla, Sugarman, James L., Baut, Emily, Neiman, Michelle R., Dacek, Megan, Ganesh, Kripa S., Johnson, Darren C., Sridharan, Ramya, Chu, Karen L., Rajasekhar, Vinagolu K., Lowe, Scott W., Chodera, John D., Heller, Daniel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930166/
https://www.ncbi.nlm.nih.gov/pubmed/29403054
http://dx.doi.org/10.1038/s41563-017-0007-z
_version_ 1783319452955181056
author Shamay, Yosi
Shah, Janki
Işık, Mehtap
Mizrachi, Aviram
Leibold, Josef
Tschaharganeh, Darjus F.
Roxbury, Daniel
Budhathoki-Uprety, Januka
Nawaly, Karla
Sugarman, James L.
Baut, Emily
Neiman, Michelle R.
Dacek, Megan
Ganesh, Kripa S.
Johnson, Darren C.
Sridharan, Ramya
Chu, Karen L.
Rajasekhar, Vinagolu K.
Lowe, Scott W.
Chodera, John D.
Heller, Daniel A.
author_facet Shamay, Yosi
Shah, Janki
Işık, Mehtap
Mizrachi, Aviram
Leibold, Josef
Tschaharganeh, Darjus F.
Roxbury, Daniel
Budhathoki-Uprety, Januka
Nawaly, Karla
Sugarman, James L.
Baut, Emily
Neiman, Michelle R.
Dacek, Megan
Ganesh, Kripa S.
Johnson, Darren C.
Sridharan, Ramya
Chu, Karen L.
Rajasekhar, Vinagolu K.
Lowe, Scott W.
Chodera, John D.
Heller, Daniel A.
author_sort Shamay, Yosi
collection PubMed
description Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. Until recently, these processes were generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system which is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultra-high drug loadings of up to 90%. Using quantitative structure-nanoparticle assembly prediction (QSNAP) calculations, we identified and validated electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables a computational design of nanomedicines based on quantitative models for drug payload selection.
format Online
Article
Text
id pubmed-5930166
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-59301662018-08-05 Quantitative Self-Assembly Prediction Yields Targeted Nanomedicines Shamay, Yosi Shah, Janki Işık, Mehtap Mizrachi, Aviram Leibold, Josef Tschaharganeh, Darjus F. Roxbury, Daniel Budhathoki-Uprety, Januka Nawaly, Karla Sugarman, James L. Baut, Emily Neiman, Michelle R. Dacek, Megan Ganesh, Kripa S. Johnson, Darren C. Sridharan, Ramya Chu, Karen L. Rajasekhar, Vinagolu K. Lowe, Scott W. Chodera, John D. Heller, Daniel A. Nat Mater Article Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. Until recently, these processes were generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system which is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultra-high drug loadings of up to 90%. Using quantitative structure-nanoparticle assembly prediction (QSNAP) calculations, we identified and validated electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables a computational design of nanomedicines based on quantitative models for drug payload selection. 2018-02-05 2018-04 /pmc/articles/PMC5930166/ /pubmed/29403054 http://dx.doi.org/10.1038/s41563-017-0007-z Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Shamay, Yosi
Shah, Janki
Işık, Mehtap
Mizrachi, Aviram
Leibold, Josef
Tschaharganeh, Darjus F.
Roxbury, Daniel
Budhathoki-Uprety, Januka
Nawaly, Karla
Sugarman, James L.
Baut, Emily
Neiman, Michelle R.
Dacek, Megan
Ganesh, Kripa S.
Johnson, Darren C.
Sridharan, Ramya
Chu, Karen L.
Rajasekhar, Vinagolu K.
Lowe, Scott W.
Chodera, John D.
Heller, Daniel A.
Quantitative Self-Assembly Prediction Yields Targeted Nanomedicines
title Quantitative Self-Assembly Prediction Yields Targeted Nanomedicines
title_full Quantitative Self-Assembly Prediction Yields Targeted Nanomedicines
title_fullStr Quantitative Self-Assembly Prediction Yields Targeted Nanomedicines
title_full_unstemmed Quantitative Self-Assembly Prediction Yields Targeted Nanomedicines
title_short Quantitative Self-Assembly Prediction Yields Targeted Nanomedicines
title_sort quantitative self-assembly prediction yields targeted nanomedicines
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930166/
https://www.ncbi.nlm.nih.gov/pubmed/29403054
http://dx.doi.org/10.1038/s41563-017-0007-z
work_keys_str_mv AT shamayyosi quantitativeselfassemblypredictionyieldstargetednanomedicines
AT shahjanki quantitativeselfassemblypredictionyieldstargetednanomedicines
AT isıkmehtap quantitativeselfassemblypredictionyieldstargetednanomedicines
AT mizrachiaviram quantitativeselfassemblypredictionyieldstargetednanomedicines
AT leiboldjosef quantitativeselfassemblypredictionyieldstargetednanomedicines
AT tschaharganehdarjusf quantitativeselfassemblypredictionyieldstargetednanomedicines
AT roxburydaniel quantitativeselfassemblypredictionyieldstargetednanomedicines
AT budhathokiupretyjanuka quantitativeselfassemblypredictionyieldstargetednanomedicines
AT nawalykarla quantitativeselfassemblypredictionyieldstargetednanomedicines
AT sugarmanjamesl quantitativeselfassemblypredictionyieldstargetednanomedicines
AT bautemily quantitativeselfassemblypredictionyieldstargetednanomedicines
AT neimanmicheller quantitativeselfassemblypredictionyieldstargetednanomedicines
AT dacekmegan quantitativeselfassemblypredictionyieldstargetednanomedicines
AT ganeshkripas quantitativeselfassemblypredictionyieldstargetednanomedicines
AT johnsondarrenc quantitativeselfassemblypredictionyieldstargetednanomedicines
AT sridharanramya quantitativeselfassemblypredictionyieldstargetednanomedicines
AT chukarenl quantitativeselfassemblypredictionyieldstargetednanomedicines
AT rajasekharvinagoluk quantitativeselfassemblypredictionyieldstargetednanomedicines
AT lowescottw quantitativeselfassemblypredictionyieldstargetednanomedicines
AT choderajohnd quantitativeselfassemblypredictionyieldstargetednanomedicines
AT hellerdaniela quantitativeselfassemblypredictionyieldstargetednanomedicines