Cargando…
A phylogenetic analysis of the Primnoidae (Anthozoa: Octocorallia: Calcaxonia) with analyses of character evolution and a key to the genera and subgenera
BACKGROUND: Previous phylogenetic analyses of primnoid octocorals utilizing morphological or molecular data have each recovered evolutionary relationships among genera that are largely incongruent with each other, with some exceptions. In an effort to reconcile molecular-based phylogenies with morph...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930830/ https://www.ncbi.nlm.nih.gov/pubmed/29716521 http://dx.doi.org/10.1186/s12862-018-1182-5 |
Sumario: | BACKGROUND: Previous phylogenetic analyses of primnoid octocorals utilizing morphological or molecular data have each recovered evolutionary relationships among genera that are largely incongruent with each other, with some exceptions. In an effort to reconcile molecular-based phylogenies with morphological characters, phylogenetic reconstructions were performed with 33 of 43 primnoid genera using four loci (mtMutS, COI, 28S and 18S), and ancestral state reconstructions were performed using 9 taxonomically relevant characters. In addition, an updated illustrated key to the current 48 genus-level (43 genera, 5 subgenera) primnoids is presented. RESULTS: Ancestral state reconstruction recovered the ancestral colony shape of primnoids as dichotomous planar. Convergence was detected among all 9 characters, and reversals to the character state of the common ancestor occurred in 4 characters. However, some characters were found to be informative. For example, the weak ascus scale of Metafannyella is not likely homologous to the ascus scales of Onogorgia and Fannyella, and the monophyly of two subgenera within Thouarella, which contain polyps in either whorls or an isolated arrangement, was supported. Phylogenetic analyses were generally consistent with previous studies, and resulted in the synonymy of one genus and a subgenus, the elevation of two subgenera, and the transfer of two species back to an original genus. For example, body wall ornamentation of Fanellia was re-evaluated, indicating a synonymy with Callogorgia; the utility of polyp arrangement for the subgenus Plumarella (Dicholaphis) was not supported, and is synonymized with the nominate subgenus Plumarella (Plumarella); the subgenera Plumarella (Faxiella) and Plumarella (Verticillata) are raised to generic status; and the two Plumarella species (P. diadema and P. undulata) are transferred back to Thouarella based on the homology of their marginal scales. CONCLUSIONS: Altogether, and similar to other octocorallian groups, these results indicate that many of the morphological characters examined among primnoids, particularly colony morphology, are labile and exhibit complex evolutionary histories. However, some morphological characters such as coordination of polyps, presence of the ascus body wall scale, number of rows of body wall scales, and number of marginal scales help identify many clades, and are suitable for robust systematic assessments among primnoids. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12862-018-1182-5) contains supplementary material, which is available to authorized users. |
---|