Cargando…

Different effects of granulocyte colony-stimulating factor and erythropoietin on erythropoiesis

BACKGROUND: Red blood cells are the most abundant cells in the blood that deliver oxygen to the whole body. Erythropoietin (EPO), a positive regulator of erythropoiesis, is currently the major treatment for chronic anemia. Granulocyte colony-stimulating factor (G-CSF) is a multifunctional cytokine a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Tzu-Lin, Chiang, Ya-Wen, Lin, Guan-Ling, Chang, Hsin-Hou, Lien, Te-Sheng, Sheh, Min-Hua, Sun, Der-Shan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930863/
https://www.ncbi.nlm.nih.gov/pubmed/29720275
http://dx.doi.org/10.1186/s13287-018-0877-2
Descripción
Sumario:BACKGROUND: Red blood cells are the most abundant cells in the blood that deliver oxygen to the whole body. Erythropoietin (EPO), a positive regulator of erythropoiesis, is currently the major treatment for chronic anemia. Granulocyte colony-stimulating factor (G-CSF) is a multifunctional cytokine and a well-known regulator of hematopoietic stem cell proliferation, differentiation, and mobilization. The use of EPO in combination with G-CSF has been reported to synergistically improve erythroid responses in a group of patients with myelodysplastic syndromes who did not respond to EPO treatment alone; however, the mechanism remains unclear. METHODS: C57BL/6 J mice injected with G-CSF or EPO were used to compare the erythropoiesis status and the efficiency of erythroid mobilization by flow cytometry. RESULTS: In this study, we found that G-CSF induced more orthochromatophilic erythroblast production than did EPO in the bone marrow and spleen. In addition, in contrast to EPO treatments, G-CSF treatments enhanced the efficiency of the mobilization of newly synthesized reticulocytes into peripheral blood. Our results demonstrated that the effects of G-CSF on erythropoiesis and erythrocytic mobilization were independent of EPO secretion and, in contrast to EPO, G-CSF promoted progression of erythropoiesis through transition of early stage R2 (basophilic erythroblasts) to late stage R4 (orthochromatophilic erythroblasts). CONCLUSIONS: We demonstrate for the first time that G-CSF treatments induce a faster erythropoiesis-enhancing response than that of EPO. These findings suggest an alternative approach to treating acute anemia, especially when patients are experiencing a clinical emergency in remote areas without proper blood bank supplies.