Cargando…
An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes
BACKGROUND: Sequence variations in coding and non-coding regions of the genome can affect gene expression and signalling pathways, which in turn may influence disease outcome. METHODS: In this study, we integrated somatic mutations, gene expression and clinical data from 930 breast cancer patients i...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931099/ https://www.ncbi.nlm.nih.gov/pubmed/29559730 http://dx.doi.org/10.1038/s41416-018-0030-0 |
_version_ | 1783319594247651328 |
---|---|
author | Győrffy, Balázs Pongor, Lőrinc Bottai, Giulia Li, Xiaotong Budczies, Jan Szabó, András Hatzis, Christos Pusztai, Lajos Santarpia, Libero |
author_facet | Győrffy, Balázs Pongor, Lőrinc Bottai, Giulia Li, Xiaotong Budczies, Jan Szabó, András Hatzis, Christos Pusztai, Lajos Santarpia, Libero |
author_sort | Győrffy, Balázs |
collection | PubMed |
description | BACKGROUND: Sequence variations in coding and non-coding regions of the genome can affect gene expression and signalling pathways, which in turn may influence disease outcome. METHODS: In this study, we integrated somatic mutations, gene expression and clinical data from 930 breast cancer patients included in the TCGA database. Genes associated with single mutations in molecular breast cancer subtypes were identified by the Mann-Whitney U-test and their prognostic value was evaluated by Kaplan-Meier and Cox regression analyses. Results were confirmed using gene expression profiles from the Metabric data set (n = 1988) and whole-genome sequencing data from the TCGA cohort (n = 117). RESULTS: The overall mutation rate in coding and non-coding regions were significantly higher in ER-negative/HER2-negative tumours (P = 2.8E–03 and P = 2.4E–07, respectively). Recurrent sequence variations were identified in non-coding regulatory regions of several cancer-associated genes, including NBPF1, PIK3CA and TP53. After multivariate regression analysis, gene signatures associated with three coding mutations (CDH1, MAP3K1 and TP53) and two non-coding variants (CRTC3 and STAG2) in cancer-related genes predicted prognosis in ER-positive/HER2-negative tumours. CONCLUSIONS: These findings demonstrate that sequence alterations influence gene expression and oncogenic pathways, possibly affecting the outcome of breast cancer patients. Our data provide potential opportunities to identify non-coding variations with functional and clinical relevance in breast cancer. |
format | Online Article Text |
id | pubmed-5931099 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-59310992019-04-15 An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes Győrffy, Balázs Pongor, Lőrinc Bottai, Giulia Li, Xiaotong Budczies, Jan Szabó, András Hatzis, Christos Pusztai, Lajos Santarpia, Libero Br J Cancer Article BACKGROUND: Sequence variations in coding and non-coding regions of the genome can affect gene expression and signalling pathways, which in turn may influence disease outcome. METHODS: In this study, we integrated somatic mutations, gene expression and clinical data from 930 breast cancer patients included in the TCGA database. Genes associated with single mutations in molecular breast cancer subtypes were identified by the Mann-Whitney U-test and their prognostic value was evaluated by Kaplan-Meier and Cox regression analyses. Results were confirmed using gene expression profiles from the Metabric data set (n = 1988) and whole-genome sequencing data from the TCGA cohort (n = 117). RESULTS: The overall mutation rate in coding and non-coding regions were significantly higher in ER-negative/HER2-negative tumours (P = 2.8E–03 and P = 2.4E–07, respectively). Recurrent sequence variations were identified in non-coding regulatory regions of several cancer-associated genes, including NBPF1, PIK3CA and TP53. After multivariate regression analysis, gene signatures associated with three coding mutations (CDH1, MAP3K1 and TP53) and two non-coding variants (CRTC3 and STAG2) in cancer-related genes predicted prognosis in ER-positive/HER2-negative tumours. CONCLUSIONS: These findings demonstrate that sequence alterations influence gene expression and oncogenic pathways, possibly affecting the outcome of breast cancer patients. Our data provide potential opportunities to identify non-coding variations with functional and clinical relevance in breast cancer. Nature Publishing Group UK 2018-03-21 2018-04-17 /pmc/articles/PMC5931099/ /pubmed/29559730 http://dx.doi.org/10.1038/s41416-018-0030-0 Text en © Cancer Research UK 2018 https://creativecommons.org/licenses/by/4.0/Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International licence (CC BY 4.0). |
spellingShingle | Article Győrffy, Balázs Pongor, Lőrinc Bottai, Giulia Li, Xiaotong Budczies, Jan Szabó, András Hatzis, Christos Pusztai, Lajos Santarpia, Libero An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes |
title | An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes |
title_full | An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes |
title_fullStr | An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes |
title_full_unstemmed | An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes |
title_short | An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes |
title_sort | integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931099/ https://www.ncbi.nlm.nih.gov/pubmed/29559730 http://dx.doi.org/10.1038/s41416-018-0030-0 |
work_keys_str_mv | AT gyorffybalazs anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT pongorlorinc anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT bottaigiulia anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT lixiaotong anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT budcziesjan anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT szaboandras anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT hatzischristos anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT pusztailajos anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT santarpialibero anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT gyorffybalazs integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT pongorlorinc integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT bottaigiulia integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT lixiaotong integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT budcziesjan integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT szaboandras integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT hatzischristos integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT pusztailajos integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes AT santarpialibero integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes |