Cargando…

An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes

BACKGROUND: Sequence variations in coding and non-coding regions of the genome can affect gene expression and signalling pathways, which in turn may influence disease outcome. METHODS: In this study, we integrated somatic mutations, gene expression and clinical data from 930 breast cancer patients i...

Descripción completa

Detalles Bibliográficos
Autores principales: Győrffy, Balázs, Pongor, Lőrinc, Bottai, Giulia, Li, Xiaotong, Budczies, Jan, Szabó, András, Hatzis, Christos, Pusztai, Lajos, Santarpia, Libero
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931099/
https://www.ncbi.nlm.nih.gov/pubmed/29559730
http://dx.doi.org/10.1038/s41416-018-0030-0
_version_ 1783319594247651328
author Győrffy, Balázs
Pongor, Lőrinc
Bottai, Giulia
Li, Xiaotong
Budczies, Jan
Szabó, András
Hatzis, Christos
Pusztai, Lajos
Santarpia, Libero
author_facet Győrffy, Balázs
Pongor, Lőrinc
Bottai, Giulia
Li, Xiaotong
Budczies, Jan
Szabó, András
Hatzis, Christos
Pusztai, Lajos
Santarpia, Libero
author_sort Győrffy, Balázs
collection PubMed
description BACKGROUND: Sequence variations in coding and non-coding regions of the genome can affect gene expression and signalling pathways, which in turn may influence disease outcome. METHODS: In this study, we integrated somatic mutations, gene expression and clinical data from 930 breast cancer patients included in the TCGA database. Genes associated with single mutations in molecular breast cancer subtypes were identified by the Mann-Whitney U-test and their prognostic value was evaluated by Kaplan-Meier and Cox regression analyses. Results were confirmed using gene expression profiles from the Metabric data set (n = 1988) and whole-genome sequencing data from the TCGA cohort (n = 117). RESULTS: The overall mutation rate in coding and non-coding regions were significantly higher in ER-negative/HER2-negative tumours (P = 2.8E–03 and P = 2.4E–07, respectively). Recurrent sequence variations were identified in non-coding regulatory regions of several cancer-associated genes, including NBPF1, PIK3CA and TP53. After multivariate regression analysis, gene signatures associated with three coding mutations (CDH1, MAP3K1 and TP53) and two non-coding variants (CRTC3 and STAG2) in cancer-related genes predicted prognosis in ER-positive/HER2-negative tumours. CONCLUSIONS: These findings demonstrate that sequence alterations influence gene expression and oncogenic pathways, possibly affecting the outcome of breast cancer patients. Our data provide potential opportunities to identify non-coding variations with functional and clinical relevance in breast cancer.
format Online
Article
Text
id pubmed-5931099
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-59310992019-04-15 An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes Győrffy, Balázs Pongor, Lőrinc Bottai, Giulia Li, Xiaotong Budczies, Jan Szabó, András Hatzis, Christos Pusztai, Lajos Santarpia, Libero Br J Cancer Article BACKGROUND: Sequence variations in coding and non-coding regions of the genome can affect gene expression and signalling pathways, which in turn may influence disease outcome. METHODS: In this study, we integrated somatic mutations, gene expression and clinical data from 930 breast cancer patients included in the TCGA database. Genes associated with single mutations in molecular breast cancer subtypes were identified by the Mann-Whitney U-test and their prognostic value was evaluated by Kaplan-Meier and Cox regression analyses. Results were confirmed using gene expression profiles from the Metabric data set (n = 1988) and whole-genome sequencing data from the TCGA cohort (n = 117). RESULTS: The overall mutation rate in coding and non-coding regions were significantly higher in ER-negative/HER2-negative tumours (P = 2.8E–03 and P = 2.4E–07, respectively). Recurrent sequence variations were identified in non-coding regulatory regions of several cancer-associated genes, including NBPF1, PIK3CA and TP53. After multivariate regression analysis, gene signatures associated with three coding mutations (CDH1, MAP3K1 and TP53) and two non-coding variants (CRTC3 and STAG2) in cancer-related genes predicted prognosis in ER-positive/HER2-negative tumours. CONCLUSIONS: These findings demonstrate that sequence alterations influence gene expression and oncogenic pathways, possibly affecting the outcome of breast cancer patients. Our data provide potential opportunities to identify non-coding variations with functional and clinical relevance in breast cancer. Nature Publishing Group UK 2018-03-21 2018-04-17 /pmc/articles/PMC5931099/ /pubmed/29559730 http://dx.doi.org/10.1038/s41416-018-0030-0 Text en © Cancer Research UK 2018 https://creativecommons.org/licenses/by/4.0/Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International licence (CC BY 4.0).
spellingShingle Article
Győrffy, Balázs
Pongor, Lőrinc
Bottai, Giulia
Li, Xiaotong
Budczies, Jan
Szabó, András
Hatzis, Christos
Pusztai, Lajos
Santarpia, Libero
An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes
title An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes
title_full An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes
title_fullStr An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes
title_full_unstemmed An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes
title_short An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes
title_sort integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931099/
https://www.ncbi.nlm.nih.gov/pubmed/29559730
http://dx.doi.org/10.1038/s41416-018-0030-0
work_keys_str_mv AT gyorffybalazs anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT pongorlorinc anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT bottaigiulia anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT lixiaotong anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT budcziesjan anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT szaboandras anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT hatzischristos anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT pusztailajos anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT santarpialibero anintegrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT gyorffybalazs integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT pongorlorinc integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT bottaigiulia integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT lixiaotong integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT budcziesjan integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT szaboandras integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT hatzischristos integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT pusztailajos integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes
AT santarpialibero integrativebioinformaticsapproachrevealscodingandnoncodinggenevariantsassociatedwithgeneexpressionprofilesandoutcomeinbreastcancermolecularsubtypes