Cargando…

Use of urinary 13,14, dihydro-15-keto-prostaglandin F(2α) (PGFM) concentrations to diagnose pregnancy and predict parturition in the giant panda (Ailuropoda melanolecua)

Pregnancy determination is difficult in the giant panda (Ailuropoda melanolecua), representing a challenge for ex situ conservation efforts. Research in other species experiencing pseudopregnancy indicates that urinary/fecal concentrations of 13,14, dihydro-15-keto-prostaglandin F(2α) (PGFM) can acc...

Descripción completa

Detalles Bibliográficos
Autores principales: Roberts, Beth M., Brown, Janine L., Kersey, David C., Snyder, Rebecca J., Durrant, Barbara S., Kouba, Andrew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931454/
https://www.ncbi.nlm.nih.gov/pubmed/29718929
http://dx.doi.org/10.1371/journal.pone.0195599
Descripción
Sumario:Pregnancy determination is difficult in the giant panda (Ailuropoda melanolecua), representing a challenge for ex situ conservation efforts. Research in other species experiencing pseudopregnancy indicates that urinary/fecal concentrations of 13,14, dihydro-15-keto-prostaglandin F(2α) (PGFM) can accurately determine pregnancy status. Our objective was to determine if urinary PGFM concentrations are associated with pregnancy status in the giant panda. Urinary PGFM concentrations were measured in female giant pandas (n = 4) throughout gestation (n = 6) and pseudopregnancy (n = 4) using a commercial enzyme immunoassay. Regardless of pregnancy status, PGFM excretion followed a predictable pattern: 1) baseline concentrations for 11–19 weeks following ovulation; 2) a modest, initial peak 14–36 days after the start of the secondary urinary progestagen rise; 3) a subsequent period of relatively low concentrations; and 4) a large, terminal peak at the end of the luteal phase. Pregnant profiles were distinguished by an earlier initial peak (P = 0.024), higher inter-peak concentrations (P < 0.001), and a larger terminal peak (P = 0.003) compared to pseudopregnancy profiles. Parturition occurred 23 to 25 days from the initial PGFM surge and within 24 hours of the start of the terminal increase. These pattern differences indicate that urinary PGFM monitoring can be used to predict pregnancy status and time parturition in the giant panda. Furthermore, this is the only species known to exhibit a significant PGFM increase during pseudopregnancy, suggesting a unique physiological mechanism for regulating the end of the luteal phase in the giant panda.