Cargando…

Progression of Post-Traumatic Osteoarthritis in rat meniscectomy models: Comprehensive monitoring using MRI

Knee injury often triggers post-traumatic osteoarthritis (PTOA) that affects articular cartilage (AC), subchondral bone, meniscus and the synovial membrane. The available treatments for PTOA are largely ineffective due to late diagnosis past the “treatment window”. This study aimed to develop a deta...

Descripción completa

Detalles Bibliográficos
Autores principales: Ali, Tonima S., Prasadam, Indira, Xiao, Yin, Momot, Konstantin I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931579/
https://www.ncbi.nlm.nih.gov/pubmed/29717217
http://dx.doi.org/10.1038/s41598-018-25186-1
Descripción
Sumario:Knee injury often triggers post-traumatic osteoarthritis (PTOA) that affects articular cartilage (AC), subchondral bone, meniscus and the synovial membrane. The available treatments for PTOA are largely ineffective due to late diagnosis past the “treatment window”. This study aimed to develop a detailed understanding of the time line of the progression of PTOA in murine models through longitudinal observation of the femorotibial joint from the onset of the disease to the advanced stage. Quantitative magnetic resonance microimaging (µMRI) and histology were used to evaluate PTOA-associated changes in the knee joints of rats subjected to knee meniscectomy. Systematic longitudinal changes in the articular cartilage thickness, cartilage T(2) and the T(2) of epiphysis within medial condyles of the tibia were all found to be associated with the development of PTOA in the animals. The following pathogenesis cascade was found to precede advanced PTOA: meniscal injury → AC swelling → subchondral bone remodelling → proteoglycan depletion → free water influx → cartilage erosion. Importantly, the imaging protocol used was entirely MRI-based. This protocol is potentially suitable for whole-knee longitudinal, non-invasive assessment of the development of OA. The results of this work will inform the improvement of the imaging methods for early diagnosis of PTOA.