Cargando…
Inferring a nonlinear biochemical network model from a heterogeneous single-cell time course data
Mathematical modeling and analysis of biochemical reaction networks are key routines in computational systems biology and biophysics; however, it remains difficult to choose the most valid model. Here, we propose a computational framework for data-driven and systematic inference of a nonlinear bioch...
Autores principales: | Shindo, Yuki, Kondo, Yohei, Sako, Yasushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931614/ https://www.ncbi.nlm.nih.gov/pubmed/29717206 http://dx.doi.org/10.1038/s41598-018-25064-w |
Ejemplares similares
-
Network inference from perturbation time course data
por: Sarmah, Deepraj, et al.
Publicado: (2022) -
Inferring the perturbation time from biological time course data
por: Yang, Jing, et al.
Publicado: (2016) -
Filter inference: A scalable nonlinear mixed effects inference approach for snapshot time series data
por: Augustin, David, et al.
Publicado: (2023) -
Intracellular and Intercellular Gene Regulatory Network Inference From Time-Course Individual RNA-Seq
por: Kashima, Makoto, et al.
Publicado: (2021) -
Dynamic probabilistic threshold networks to infer signaling pathways from time-course perturbation data
por: Kiani, Narsis A, et al.
Publicado: (2014)