Cargando…
Optimization of a closed rat tibial fracture model
BACKGROUND: The use of a closed fracture model has become the preferred model to study the fracture healing process, given that the periosteum and the soft tissue surrounding the fracture site play an important role in the fracture healing process. Some techniques like osteotomy, drilling the long b...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931953/ https://www.ncbi.nlm.nih.gov/pubmed/29721763 http://dx.doi.org/10.1186/s40634-018-0128-6 |
_version_ | 1783319725313359872 |
---|---|
author | Handool, Kareem Obayes Ibrahim, Sahar Mohammed Kaka, Ubedullah Omar, Muhammad Aarif Abu, Jalila Yusoff, Md Sabri Mohd Yusof, Loqman Mohamad |
author_facet | Handool, Kareem Obayes Ibrahim, Sahar Mohammed Kaka, Ubedullah Omar, Muhammad Aarif Abu, Jalila Yusoff, Md Sabri Mohd Yusof, Loqman Mohamad |
author_sort | Handool, Kareem Obayes |
collection | PubMed |
description | BACKGROUND: The use of a closed fracture model has become the preferred model to study the fracture healing process, given that the periosteum and the soft tissue surrounding the fracture site play an important role in the fracture healing process. Some techniques like osteotomy, drilling the long bones and the use of the guillotine-like apparatus to induce fracture are characterized by some undesirable effects and complications. The aim of this study is to optimize and evaluate an in vivo fracture model using three-point bending pliers that can be used to study secondary bone fracture healing in rats. METHODS: Modified three-point bending pliers were used as a device to create the closed rat tibial bone fracture that was prefixed with an intramedullary pin (23 G × 1(1)/(2)″) in rats. The exact location of the induced closed fracture was along the long bone. The presence of bone comminution, and the fracture bone alignment were immediately examined after the induction of the fracture until the 6th week. RESULTS: All fractures induced were transverse, located in the middle to proximal one third of the tibia, and they all healed without complications. Bone union as shown radiographically occurred within 2–3 weeks postoperative. The average angle of the fracture line with the axis of the tibia was 89.41 ± 2.11°. The lateral and anterio-posterior pin angulation views were 167.33 ± 3.67° and 161.60 ± 4.87° respectively. The average length of proximal end of the fractured bone in comparison with the whole length of intact bone was 41.02 ± 3.27%. There was a significant difference in percentage of the gross callus area and gross callus index, while there was no significant difference in X-ray callus index. There was no significant difference of the gross callus area between slight comminution (n = 4) and non comminution (n = 21). CONCLUSION: The optimized rat tibial fracture model resulted in mainly transverse tibial mid-shaft fractures with minimal bone comminution and absence of surrounding soft tissue damage. The size area of consequent soft callus formation and the extent to which the closed fracture model was reproducible are very good outcomes making it feasible for in vivo laboratory research use. |
format | Online Article Text |
id | pubmed-5931953 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-59319532018-05-09 Optimization of a closed rat tibial fracture model Handool, Kareem Obayes Ibrahim, Sahar Mohammed Kaka, Ubedullah Omar, Muhammad Aarif Abu, Jalila Yusoff, Md Sabri Mohd Yusof, Loqman Mohamad J Exp Orthop Research BACKGROUND: The use of a closed fracture model has become the preferred model to study the fracture healing process, given that the periosteum and the soft tissue surrounding the fracture site play an important role in the fracture healing process. Some techniques like osteotomy, drilling the long bones and the use of the guillotine-like apparatus to induce fracture are characterized by some undesirable effects and complications. The aim of this study is to optimize and evaluate an in vivo fracture model using three-point bending pliers that can be used to study secondary bone fracture healing in rats. METHODS: Modified three-point bending pliers were used as a device to create the closed rat tibial bone fracture that was prefixed with an intramedullary pin (23 G × 1(1)/(2)″) in rats. The exact location of the induced closed fracture was along the long bone. The presence of bone comminution, and the fracture bone alignment were immediately examined after the induction of the fracture until the 6th week. RESULTS: All fractures induced were transverse, located in the middle to proximal one third of the tibia, and they all healed without complications. Bone union as shown radiographically occurred within 2–3 weeks postoperative. The average angle of the fracture line with the axis of the tibia was 89.41 ± 2.11°. The lateral and anterio-posterior pin angulation views were 167.33 ± 3.67° and 161.60 ± 4.87° respectively. The average length of proximal end of the fractured bone in comparison with the whole length of intact bone was 41.02 ± 3.27%. There was a significant difference in percentage of the gross callus area and gross callus index, while there was no significant difference in X-ray callus index. There was no significant difference of the gross callus area between slight comminution (n = 4) and non comminution (n = 21). CONCLUSION: The optimized rat tibial fracture model resulted in mainly transverse tibial mid-shaft fractures with minimal bone comminution and absence of surrounding soft tissue damage. The size area of consequent soft callus formation and the extent to which the closed fracture model was reproducible are very good outcomes making it feasible for in vivo laboratory research use. Springer Berlin Heidelberg 2018-05-02 /pmc/articles/PMC5931953/ /pubmed/29721763 http://dx.doi.org/10.1186/s40634-018-0128-6 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Handool, Kareem Obayes Ibrahim, Sahar Mohammed Kaka, Ubedullah Omar, Muhammad Aarif Abu, Jalila Yusoff, Md Sabri Mohd Yusof, Loqman Mohamad Optimization of a closed rat tibial fracture model |
title | Optimization of a closed rat tibial fracture model |
title_full | Optimization of a closed rat tibial fracture model |
title_fullStr | Optimization of a closed rat tibial fracture model |
title_full_unstemmed | Optimization of a closed rat tibial fracture model |
title_short | Optimization of a closed rat tibial fracture model |
title_sort | optimization of a closed rat tibial fracture model |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931953/ https://www.ncbi.nlm.nih.gov/pubmed/29721763 http://dx.doi.org/10.1186/s40634-018-0128-6 |
work_keys_str_mv | AT handoolkareemobayes optimizationofaclosedrattibialfracturemodel AT ibrahimsaharmohammed optimizationofaclosedrattibialfracturemodel AT kakaubedullah optimizationofaclosedrattibialfracturemodel AT omarmuhammadaarif optimizationofaclosedrattibialfracturemodel AT abujalila optimizationofaclosedrattibialfracturemodel AT yusoffmdsabrimohd optimizationofaclosedrattibialfracturemodel AT yusofloqmanmohamad optimizationofaclosedrattibialfracturemodel |