Cargando…
Regularized Laplacian determinants of self-similar fractals
We study the spectral zeta functions of the Laplacian on fractal sets which are locally self-similar fractafolds, in the sense of Strichartz. These functions are known to meromorphically extend to the entire complex plane, and the locations of their poles, sometimes referred to as complex dimensions...
Autores principales: | Chen, Joe P., Teplyaev, Alexander, Tsougkas, Konstantinos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932140/ https://www.ncbi.nlm.nih.gov/pubmed/29755183 http://dx.doi.org/10.1007/s11005-017-1027-y |
Ejemplares similares
-
Analysis on fractals, laplacians on self-similar sets, noncommutative geometry and spectral dimensions
por: Lapidus, M L
Publicado: (1995) -
Visualization of genetic disease-phenotype similarities by multiple maps t-SNE with Laplacian regularization
por: Xu, Weiwei, et al.
Publicado: (2014) -
A universal dimensionality function for the fractal dimensions of Laplacian growth
por: Nicolás-Carlock, J. R., et al.
Publicado: (2019) -
Fractal Analysis of Laplacian Pyramidal Filters Applied to Segmentation of Soil Images
por: de Castro, J., et al.
Publicado: (2014) -
Kinase Identification with Supervised Laplacian Regularized Least Squares
por: Li, Ao, et al.
Publicado: (2015)