Cargando…
Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm
The proximal gradient algorithm is an appealing approach in finding solutions of non-smooth composite optimization problems, which may only has weak convergence in the infinite-dimensional setting. In this paper, we introduce a modified proximal gradient algorithm with outer perturbations in Hilbert...
Autores principales: | Guo, Yanni, Cui, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932141/ https://www.ncbi.nlm.nih.gov/pubmed/29755243 http://dx.doi.org/10.1186/s13660-018-1695-x |
Ejemplares similares
-
Inducing strong convergence into the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces
por: Boţ, Radu Ioan, et al.
Publicado: (2018) -
Bounded perturbation resilience of extragradient-type methods and their applications
por: Dong, Q-L, et al.
Publicado: (2017) -
Proximal-gradient algorithms for fractional programming
por: Boţ, Radu Ioan, et al.
Publicado: (2017) -
Strong convergence of gradient projection method for generalized equilibrium problem in a Banach space
por: Farid, Mohammad, et al.
Publicado: (2017) -
Strong Convergence of a Monotone Projection Algorithm in a Banach Space
por: Lv, Songtao
Publicado: (2013)