Cargando…
Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks
INTRODUCTION: Chronic kidney damage is routinely assessed semiquantitatively by scoring the amount of fibrosis and tubular atrophy in a renal biopsy sample. Although image digitization and morphometric techniques can better quantify the extent of histologic damage, we need more widely applicable way...
Autores principales: | Kolachalama, Vijaya B., Singh, Priyamvada, Lin, Christopher Q., Mun, Dan, Belghasem, Mostafa E., Henderson, Joel M., Francis, Jean M., Salant, David J., Chitalia, Vipul C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932308/ https://www.ncbi.nlm.nih.gov/pubmed/29725651 http://dx.doi.org/10.1016/j.ekir.2017.11.002 |
Ejemplares similares
-
Segmentation of Glomeruli Within Trichrome Images Using Deep Learning
por: Kannan, Shruti, et al.
Publicado: (2019) -
Alleviating iatrogenic effects of paclitaxel via anti-inflammatory treatment
por: Zhang, Mengwei, et al.
Publicado: (2023) -
c-Cbl: An Important Regulator and a Target in Angiogenesis and Tumorigenesis
por: Lyle, Chimera L., et al.
Publicado: (2019) -
Machine Learning Applications in Nephrology: A Bibliometric Analysis Comparing Kidney Studies to Other Medicine Subspecialities
por: Verma, Ashish, et al.
Publicado: (2021) -
Towards minimally-invasive, quantitative assessment of chronic kidney disease using optical spectroscopy
por: Belghasem, Mostafa E., et al.
Publicado: (2019)