Cargando…
Precision, Reliability, and Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis
Latent Growth Curve Models (LGCM) have become a standard technique to model change over time. Prediction and explanation of inter-individual differences in change are major goals in lifespan research. The major determinants of statistical power to detect individual differences in change are the magn...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932409/ https://www.ncbi.nlm.nih.gov/pubmed/29755377 http://dx.doi.org/10.3389/fpsyg.2018.00294 |
_version_ | 1783319808489553920 |
---|---|
author | Brandmaier, Andreas M. von Oertzen, Timo Ghisletta, Paolo Lindenberger, Ulman Hertzog, Christopher |
author_facet | Brandmaier, Andreas M. von Oertzen, Timo Ghisletta, Paolo Lindenberger, Ulman Hertzog, Christopher |
author_sort | Brandmaier, Andreas M. |
collection | PubMed |
description | Latent Growth Curve Models (LGCM) have become a standard technique to model change over time. Prediction and explanation of inter-individual differences in change are major goals in lifespan research. The major determinants of statistical power to detect individual differences in change are the magnitude of true inter-individual differences in linear change (LGCM slope variance), design precision, alpha level, and sample size. Here, we show that design precision can be expressed as the inverse of effective error. Effective error is determined by instrument reliability and the temporal arrangement of measurement occasions. However, it also depends on another central LGCM component, the variance of the latent intercept and its covariance with the latent slope. We derive a new reliability index for LGCM slope variance—effective curve reliability (ECR)—by scaling slope variance against effective error. ECR is interpretable as a standardized effect size index. We demonstrate how effective error, ECR, and statistical power for a likelihood ratio test of zero slope variance formally relate to each other and how they function as indices of statistical power. We also provide a computational approach to derive ECR for arbitrary intercept-slope covariance. With practical use cases, we argue for the complementary utility of the proposed indices of a study's sensitivity to detect slope variance when making a priori longitudinal design decisions or communicating study designs. |
format | Online Article Text |
id | pubmed-5932409 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59324092018-05-11 Precision, Reliability, and Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis Brandmaier, Andreas M. von Oertzen, Timo Ghisletta, Paolo Lindenberger, Ulman Hertzog, Christopher Front Psychol Psychology Latent Growth Curve Models (LGCM) have become a standard technique to model change over time. Prediction and explanation of inter-individual differences in change are major goals in lifespan research. The major determinants of statistical power to detect individual differences in change are the magnitude of true inter-individual differences in linear change (LGCM slope variance), design precision, alpha level, and sample size. Here, we show that design precision can be expressed as the inverse of effective error. Effective error is determined by instrument reliability and the temporal arrangement of measurement occasions. However, it also depends on another central LGCM component, the variance of the latent intercept and its covariance with the latent slope. We derive a new reliability index for LGCM slope variance—effective curve reliability (ECR)—by scaling slope variance against effective error. ECR is interpretable as a standardized effect size index. We demonstrate how effective error, ECR, and statistical power for a likelihood ratio test of zero slope variance formally relate to each other and how they function as indices of statistical power. We also provide a computational approach to derive ECR for arbitrary intercept-slope covariance. With practical use cases, we argue for the complementary utility of the proposed indices of a study's sensitivity to detect slope variance when making a priori longitudinal design decisions or communicating study designs. Frontiers Media S.A. 2018-04-17 /pmc/articles/PMC5932409/ /pubmed/29755377 http://dx.doi.org/10.3389/fpsyg.2018.00294 Text en Copyright © 2018 Brandmaier, von Oertzen, Ghisletta, Lindenberger and Hertzog. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychology Brandmaier, Andreas M. von Oertzen, Timo Ghisletta, Paolo Lindenberger, Ulman Hertzog, Christopher Precision, Reliability, and Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis |
title | Precision, Reliability, and Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis |
title_full | Precision, Reliability, and Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis |
title_fullStr | Precision, Reliability, and Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis |
title_full_unstemmed | Precision, Reliability, and Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis |
title_short | Precision, Reliability, and Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis |
title_sort | precision, reliability, and effect size of slope variance in latent growth curve models: implications for statistical power analysis |
topic | Psychology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932409/ https://www.ncbi.nlm.nih.gov/pubmed/29755377 http://dx.doi.org/10.3389/fpsyg.2018.00294 |
work_keys_str_mv | AT brandmaierandreasm precisionreliabilityandeffectsizeofslopevarianceinlatentgrowthcurvemodelsimplicationsforstatisticalpoweranalysis AT vonoertzentimo precisionreliabilityandeffectsizeofslopevarianceinlatentgrowthcurvemodelsimplicationsforstatisticalpoweranalysis AT ghislettapaolo precisionreliabilityandeffectsizeofslopevarianceinlatentgrowthcurvemodelsimplicationsforstatisticalpoweranalysis AT lindenbergerulman precisionreliabilityandeffectsizeofslopevarianceinlatentgrowthcurvemodelsimplicationsforstatisticalpoweranalysis AT hertzogchristopher precisionreliabilityandeffectsizeofslopevarianceinlatentgrowthcurvemodelsimplicationsforstatisticalpoweranalysis |