Cargando…

A Numerical Investigation of Risk Factors Affecting Lumbar Spine Injuries Using a Detailed Lumbar Model

Recent field data showed that lumbar spine fractures occurred more frequently in late model vehicles than early ones in frontal crashes. However, the lumbar spine designs of the current crash test dummies are not accurate in human anatomy and have not been validated against any human/cadaver impact...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Jiajia, Tang, Liang, Hu, Jingwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932496/
https://www.ncbi.nlm.nih.gov/pubmed/29849762
http://dx.doi.org/10.1155/2018/8626102
Descripción
Sumario:Recent field data showed that lumbar spine fractures occurred more frequently in late model vehicles than early ones in frontal crashes. However, the lumbar spine designs of the current crash test dummies are not accurate in human anatomy and have not been validated against any human/cadaver impact responses. In addition, the lumbar spines of finite element (FE) human models, including GHBMC and THUMS, have never been validated previously against cadaver tests. Therefore, this study developed a detailed FE lumbar spine model and validated it against cadaveric tests. To investigate the mechanism of lumbar spine injury in frontal crashes, effects of changing the coefficient of friction (COF), impact velocity, cushion thickness and stiffness, and cushion angle on the risk of lumbar spine injuries were analyzed based on a Taguchi array of design of experiments. The results showed that impact velocity is the most important factor in determining the risk of lumbar spine fracture (P = 0.009). After controlling the impact velocity, increases in the cushion thickness can effectively reduce the risk of lumbar spine fracture (P = 0.039).