Cargando…
Sequential regulatory activity prediction across chromosomes with convolutional neural networks
Models for predicting phenotypic outcomes from genotypes have important applications to understanding genomic function and improving human health. Here, we develop a machine-learning system to predict cell-type–specific epigenetic and transcriptional profiles in large mammalian genomes from DNA sequ...
Autores principales: | Kelley, David R., Reshef, Yakir A., Bileschi, Maxwell, Belanger, David, McLean, Cory Y., Snoek, Jasper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932613/ https://www.ncbi.nlm.nih.gov/pubmed/29588361 http://dx.doi.org/10.1101/gr.227819.117 |
Ejemplares similares
-
Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
por: Kelley, David R., et al.
Publicado: (2016) -
ProteInfer, deep neural networks for protein functional inference
por: Sanderson, Theo, et al.
Publicado: (2023) -
Characterizing RNA Pseudouridylation by Convolutional Neural Networks
por: He, Xuan, et al.
Publicado: (2021) -
Convolutional neural network model to predict causal risk factors that share complex regulatory features
por: Lee, Taeyeop, et al.
Publicado: (2019) -
Reducing Pervasive False-Positive Identical-by-Descent Segments Detected by Large-Scale Pedigree Analysis
por: Durand, Eric Y., et al.
Publicado: (2014)