Cargando…
Cheese Manufacturing and Bioactive Substance Separation: Separation and Preliminary Purification of cAMP from Whey
Cheese consumption has been gradually increased in China. However, both the manufacturing process of cheese and the utilization of its main by-product were not well developed. Based on the sensory evaluation, Box-Behnken Design (BBD) was performed in the present study to optimize the cheese processi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Food Science of Animal Resources
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932959/ https://www.ncbi.nlm.nih.gov/pubmed/29725224 http://dx.doi.org/10.5851/kosfa.2018.38.1.052 |
Sumario: | Cheese consumption has been gradually increased in China. However, both the manufacturing process of cheese and the utilization of its main by-product were not well developed. Based on the sensory evaluation, Box-Behnken Design (BBD) was performed in the present study to optimize the cheese processing, which was proved more suitable for Chinese. The optimal parameters were: rennet 0.052 g/L, start culture 0.025 g/L and CaCl(2) 0.1 g/L. The composition analysis of fresh bovine milk and whey showed that whey contained most of the soluble nutrients of milk, which indicated that whey was a potential resource of cyclic adenosine-3’, 5’-monophosphate (cAMP). Thus, the cAMP was isolated from whey, the results of high-performance liquid chromatography (HPLC) analysis showed that the macroporous adsorption resins (MAR) D290 could increase the concentration of cAMP from 0.058 µmol/mL to 0.095 µmol/mL. We firstly purified the cAMP from the whey, which could become a new source of cAMP. |
---|