Cargando…
Brain State Decoding Based on fMRI Using Semisupervised Sparse Representation Classifications
Multivariate classification techniques have been widely applied to decode brain states using functional magnetic resonance imaging (fMRI). Due to variabilities in fMRI data and the limitation of the collection of human fMRI data, it is not easy to train an efficient and robust supervised-learning cl...
Autores principales: | Zhang, Jing, Zhang, Chuncheng, Yao, Li, Zhao, Xiaojie, Long, Zhiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933074/ https://www.ncbi.nlm.nih.gov/pubmed/29849545 http://dx.doi.org/10.1155/2018/3956536 |
Ejemplares similares
-
Sparse coding representation of emotional brain states in fMRI data
por: Mamlouk, Amir Madany, et al.
Publicado: (2010) -
Robust brain parcellation using sparse representation on resting-state fMRI
por: Zhang, Yu, et al.
Publicado: (2014) -
Multitask fMRI Data Classification via Group-Wise Hybrid Temporal and Spatial Sparse Representations
por: Song, Limei, et al.
Publicado: (2022) -
Decoding of Walking Imagery and Idle State Using Sparse Representation Based on fNIRS
por: Li, Hongquan, et al.
Publicado: (2021) -
Sparse network-based models for patient classification using fMRI
por: Rosa, Maria J., et al.
Publicado: (2015)