Cargando…

Generation and Isolation of Cell Cycle-arrested Cells with Complex Karyotypes

Chromosome mis-segregation leads to aneuploidy, a condition in which cells harbor an imbalanced chromosome number. Several lines of evidence strongly indicate that aneuploidy triggers genome instability, ultimately generating cells with complex karyotypes that arrest their proliferation. Isolation a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ruoxi W., MacDuffie, Emily, Santaguida, Stefano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933501/
https://www.ncbi.nlm.nih.gov/pubmed/29708530
http://dx.doi.org/10.3791/57215
Descripción
Sumario:Chromosome mis-segregation leads to aneuploidy, a condition in which cells harbor an imbalanced chromosome number. Several lines of evidence strongly indicate that aneuploidy triggers genome instability, ultimately generating cells with complex karyotypes that arrest their proliferation. Isolation and characterization of cells harboring complex karyotypes are crucial to study the impact of an imbalanced chromosome number on cell physiology. To date, no methods have been established to reliably isolate such aneuploid cells. This paper provides a protocol for the enrichment and analysis of aneuploid cells with complex karyotypes utilizing standard, inexpensive tissue culture techniques. This protocol can be used to analyze several features of aneuploid cells with complex karyotypes including their induced senescence-associated secretory phenotype, pro-inflammatory properties, and ability to interact with immune cells. Because cancer cells often harbor imbalances in chromosome number, it is crucial to decipher how aneuploidy impacts cell physiology in normal cells, with the ultimate goal of uncovering both its pro- and anti-tumorigenic effects.