Cargando…
ENTPRISE-X: Predicting disease-associated frameshift and nonsense mutations
To exploit the plethora of information provided by Next Generation Sequencing, the identification of the genetic mutations responsible for disease in general or cancer in particular, among the thousands of neutral germline or somatic variations is a crucial task. Genome-wide association studies for...
Autores principales: | Zhou, Hongyi, Gao, Mu, Skolnick, Jeffrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933770/ https://www.ncbi.nlm.nih.gov/pubmed/29723276 http://dx.doi.org/10.1371/journal.pone.0196849 |
Ejemplares similares
-
ENTPRISE: An Algorithm for Predicting Human Disease-Associated Amino Acid Substitutions from Sequence Entropy and Predicted Protein Structures
por: Zhou, Hongyi, et al.
Publicado: (2016) -
Gene characteristics predicting missense, nonsense and frameshift mutations in tumor samples
por: Gorlov, Ivan P., et al.
Publicado: (2018) -
Suppression of nonsense codon or frameshift mutation especially useful in vaccine production
Publicado: (1988) -
Comprehensive prediction of drug-protein interactions and side effects for the human proteome
por: Zhou, Hongyi, et al.
Publicado: (2015) -
DESTINI: A deep-learning approach to contact-driven protein structure prediction
por: Gao, Mu, et al.
Publicado: (2019)