Cargando…
Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5’ splice site
Phenylketonuria (PKU), one of the most common inherited diseases of amino acid metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH) gene. Recently, PAH exon 11 was identified as a vulnerable exon due to a weak 3’ splice site, with different exonic mutations affecting exon 11 spl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933811/ https://www.ncbi.nlm.nih.gov/pubmed/29684050 http://dx.doi.org/10.1371/journal.pgen.1007360 |
_version_ | 1783320016536469504 |
---|---|
author | Martínez-Pizarro, Ainhoa Dembic, Maja Pérez, Belén Andresen, Brage S. Desviat, Lourdes R. |
author_facet | Martínez-Pizarro, Ainhoa Dembic, Maja Pérez, Belén Andresen, Brage S. Desviat, Lourdes R. |
author_sort | Martínez-Pizarro, Ainhoa |
collection | PubMed |
description | Phenylketonuria (PKU), one of the most common inherited diseases of amino acid metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH) gene. Recently, PAH exon 11 was identified as a vulnerable exon due to a weak 3’ splice site, with different exonic mutations affecting exon 11 splicing through disruption of exonic splicing regulatory elements. In this study, we report a novel intron 11 regulatory element, which is involved in exon 11 splicing, as revealed by the investigated pathogenic effect of variants c.1199+17G>A and c.1199+20G>C, identified in PKU patients. Both mutations cause exon 11 skipping in a minigene system. RNA binding assays indicate that binding of U1snRNP70 to this intronic region is disrupted, concomitant with a slightly increased binding of inhibitors hnRNPA1/2. We have investigated the effect of deletions and point mutations, as well as overexpression of adapted U1snRNA to show that this splicing regulatory motif is important for regulation of correct splicing at the natural 5’ splice site. The results indicate that U1snRNP binding downstream of the natural 5’ splice site determines efficient exon 11 splicing, thus providing a basis for development of therapeutic strategies to correct PAH exon 11 splicing mutations. In this work, we expand the functional effects of non-canonical intronic U1 snRNP binding by showing that it may enhance exon definition and that, consequently, intronic mutations may cause exon skipping by a novel mechanism, where they disrupt stimulatory U1 snRNP binding close to the 5’ splice site. Notably, our results provide further understanding of the reported therapeutic effect of exon specific U1 snRNA for splicing mutations in disease. |
format | Online Article Text |
id | pubmed-5933811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59338112018-05-18 Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5’ splice site Martínez-Pizarro, Ainhoa Dembic, Maja Pérez, Belén Andresen, Brage S. Desviat, Lourdes R. PLoS Genet Research Article Phenylketonuria (PKU), one of the most common inherited diseases of amino acid metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH) gene. Recently, PAH exon 11 was identified as a vulnerable exon due to a weak 3’ splice site, with different exonic mutations affecting exon 11 splicing through disruption of exonic splicing regulatory elements. In this study, we report a novel intron 11 regulatory element, which is involved in exon 11 splicing, as revealed by the investigated pathogenic effect of variants c.1199+17G>A and c.1199+20G>C, identified in PKU patients. Both mutations cause exon 11 skipping in a minigene system. RNA binding assays indicate that binding of U1snRNP70 to this intronic region is disrupted, concomitant with a slightly increased binding of inhibitors hnRNPA1/2. We have investigated the effect of deletions and point mutations, as well as overexpression of adapted U1snRNA to show that this splicing regulatory motif is important for regulation of correct splicing at the natural 5’ splice site. The results indicate that U1snRNP binding downstream of the natural 5’ splice site determines efficient exon 11 splicing, thus providing a basis for development of therapeutic strategies to correct PAH exon 11 splicing mutations. In this work, we expand the functional effects of non-canonical intronic U1 snRNP binding by showing that it may enhance exon definition and that, consequently, intronic mutations may cause exon skipping by a novel mechanism, where they disrupt stimulatory U1 snRNP binding close to the 5’ splice site. Notably, our results provide further understanding of the reported therapeutic effect of exon specific U1 snRNA for splicing mutations in disease. Public Library of Science 2018-04-23 /pmc/articles/PMC5933811/ /pubmed/29684050 http://dx.doi.org/10.1371/journal.pgen.1007360 Text en © 2018 Martínez-Pizarro et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Martínez-Pizarro, Ainhoa Dembic, Maja Pérez, Belén Andresen, Brage S. Desviat, Lourdes R. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5’ splice site |
title | Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5’ splice site |
title_full | Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5’ splice site |
title_fullStr | Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5’ splice site |
title_full_unstemmed | Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5’ splice site |
title_short | Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5’ splice site |
title_sort | intronic pah gene mutations cause a splicing defect by a novel mechanism involving u1snrnp binding downstream of the 5’ splice site |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933811/ https://www.ncbi.nlm.nih.gov/pubmed/29684050 http://dx.doi.org/10.1371/journal.pgen.1007360 |
work_keys_str_mv | AT martinezpizarroainhoa intronicpahgenemutationscauseasplicingdefectbyanovelmechanisminvolvingu1snrnpbindingdownstreamofthe5splicesite AT dembicmaja intronicpahgenemutationscauseasplicingdefectbyanovelmechanisminvolvingu1snrnpbindingdownstreamofthe5splicesite AT perezbelen intronicpahgenemutationscauseasplicingdefectbyanovelmechanisminvolvingu1snrnpbindingdownstreamofthe5splicesite AT andresenbrages intronicpahgenemutationscauseasplicingdefectbyanovelmechanisminvolvingu1snrnpbindingdownstreamofthe5splicesite AT desviatlourdesr intronicpahgenemutationscauseasplicingdefectbyanovelmechanisminvolvingu1snrnpbindingdownstreamofthe5splicesite |