Cargando…
Transformation of sludge Si to nano-Si/SiO(x) structure by oxygen inward diffusion as precursor for high performance anodes in lithium ion batteries
Although several Si/C composite structures have been proposed for high-performance lithium-ion batteries (LIBs), they have still suffered from expensive and complex processes of nano-Si production. Herein, a simple, controllable oxygen inward diffusion was utilized to transform Si sludge obtained fr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934289/ https://www.ncbi.nlm.nih.gov/pubmed/29725870 http://dx.doi.org/10.1186/s11671-018-2549-7 |
Sumario: | Although several Si/C composite structures have been proposed for high-performance lithium-ion batteries (LIBs), they have still suffered from expensive and complex processes of nano-Si production. Herein, a simple, controllable oxygen inward diffusion was utilized to transform Si sludge obtained from the photovoltaic (PV) industry into the nano-Si/SiO(x) structure as a result of the high diffusion efficiency of O inside Si and high surface area of the sludge. After further process, a yolk/shell Si/C structure was obtained as an anode material for LIBs. This composite demonstrated an excellent cycling stability, with a high reversible capacity (∼ 1250 mAh/g for 500 cycles), by void space originally left by the SiO(x) accommodate inner Si expansion. We believe this is a rather simple way to convert the waste Si into a valuable nano-Si for LIB applications. |
---|