Cargando…

Crystal structure and mutational analysis of Mycobacterium smegmatis FenA highlight active site amino acids and three metal ions essential for flap endonuclease and 5′ exonuclease activities

Mycobacterium smegmatis FenA is a nucleic acid phosphodiesterase with flap endonuclease and 5′ exonuclease activities. The 1.8 Å crystal structure of FenA reported here highlights as its closest homologs bacterial FEN-family enzymes ExoIX, the Pol1 exonuclease domain and phage T5 Fen. Mycobacterial...

Descripción completa

Detalles Bibliográficos
Autores principales: Uson, Maria Loressa, Carl, Ayala, Goldgur, Yehuda, Shuman, Stewart
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934675/
https://www.ncbi.nlm.nih.gov/pubmed/29635474
http://dx.doi.org/10.1093/nar/gky238
Descripción
Sumario:Mycobacterium smegmatis FenA is a nucleic acid phosphodiesterase with flap endonuclease and 5′ exonuclease activities. The 1.8 Å crystal structure of FenA reported here highlights as its closest homologs bacterial FEN-family enzymes ExoIX, the Pol1 exonuclease domain and phage T5 Fen. Mycobacterial FenA assimilates three active site manganese ions (M1, M2, M3) that are coordinated, directly and via waters, to a constellation of eight carboxylate side chains. We find via mutagenesis that the carboxylate contacts to all three manganese ions are essential for FenA’s activities. Structures of nuclease-dead FenA mutants D125N, D148N and D208N reveal how they fail to bind one of the three active site Mn(2+) ions, in a distinctive fashion for each Asn change. The structure of FenA D208N with a phosphate anion engaged by M1 and M2 in a state mimetic of a product complex suggests a mechanism for metal-catalyzed phosphodiester hydrolysis similar to that proposed for human Exo1. A distinctive feature of FenA is that it does not have the helical arch module found in many other FEN/FEN-like enzymes. Instead, this segment of FenA adopts a unique structure comprising a short 3(10) helix and surface β-loop that coordinates a fourth manganese ion (M4).