Cargando…
Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers
BACKGROUND: The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered sev...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934817/ https://www.ncbi.nlm.nih.gov/pubmed/29724166 http://dx.doi.org/10.1186/s12859-018-2148-8 |
_version_ | 1783320184581259264 |
---|---|
author | Galpert, Deborah Fernández, Alberto Herrera, Francisco Antunes, Agostinho Molina-Ruiz, Reinaldo Agüero-Chapin, Guillermin |
author_facet | Galpert, Deborah Fernández, Alberto Herrera, Francisco Antunes, Agostinho Molina-Ruiz, Reinaldo Agüero-Chapin, Guillermin |
author_sort | Galpert, Deborah |
collection | PubMed |
description | BACKGROUND: The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered several pairwise protein features and the low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International, 2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach; they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes. RESULTS: The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built with only alignment-based similarity measures or combined with several alignment-free pairwise protein features showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such supervised approaches outperformed traditional methods, there were no significant differences between the exclusive use of alignment-based similarity measures and their combination with alignment-free features, even within the twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed that alignment-based features were top-ranked for the best classifiers while the runners-up were alignment-free features related to amino acid composition. CONCLUSIONS: The incorporation of alignment-free features in supervised big data models did not significantly improve ortholog detection in yeast proteomes regarding the classification qualities achieved with just alignment-based similarity measures. However, the similarity of their classification performance to that of traditional ortholog detection methods encourages the evaluation of other alignment-free protein pair descriptors in future research. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2148-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5934817 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-59348172018-05-09 Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers Galpert, Deborah Fernández, Alberto Herrera, Francisco Antunes, Agostinho Molina-Ruiz, Reinaldo Agüero-Chapin, Guillermin BMC Bioinformatics Research Article BACKGROUND: The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered several pairwise protein features and the low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International, 2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach; they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes. RESULTS: The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built with only alignment-based similarity measures or combined with several alignment-free pairwise protein features showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such supervised approaches outperformed traditional methods, there were no significant differences between the exclusive use of alignment-based similarity measures and their combination with alignment-free features, even within the twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed that alignment-based features were top-ranked for the best classifiers while the runners-up were alignment-free features related to amino acid composition. CONCLUSIONS: The incorporation of alignment-free features in supervised big data models did not significantly improve ortholog detection in yeast proteomes regarding the classification qualities achieved with just alignment-based similarity measures. However, the similarity of their classification performance to that of traditional ortholog detection methods encourages the evaluation of other alignment-free protein pair descriptors in future research. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2148-8) contains supplementary material, which is available to authorized users. BioMed Central 2018-05-03 /pmc/articles/PMC5934817/ /pubmed/29724166 http://dx.doi.org/10.1186/s12859-018-2148-8 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Galpert, Deborah Fernández, Alberto Herrera, Francisco Antunes, Agostinho Molina-Ruiz, Reinaldo Agüero-Chapin, Guillermin Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers |
title | Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers |
title_full | Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers |
title_fullStr | Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers |
title_full_unstemmed | Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers |
title_short | Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers |
title_sort | surveying alignment-free features for ortholog detection in related yeast proteomes by using supervised big data classifiers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934817/ https://www.ncbi.nlm.nih.gov/pubmed/29724166 http://dx.doi.org/10.1186/s12859-018-2148-8 |
work_keys_str_mv | AT galpertdeborah surveyingalignmentfreefeaturesfororthologdetectioninrelatedyeastproteomesbyusingsupervisedbigdataclassifiers AT fernandezalberto surveyingalignmentfreefeaturesfororthologdetectioninrelatedyeastproteomesbyusingsupervisedbigdataclassifiers AT herrerafrancisco surveyingalignmentfreefeaturesfororthologdetectioninrelatedyeastproteomesbyusingsupervisedbigdataclassifiers AT antunesagostinho surveyingalignmentfreefeaturesfororthologdetectioninrelatedyeastproteomesbyusingsupervisedbigdataclassifiers AT molinaruizreinaldo surveyingalignmentfreefeaturesfororthologdetectioninrelatedyeastproteomesbyusingsupervisedbigdataclassifiers AT aguerochapinguillermin surveyingalignmentfreefeaturesfororthologdetectioninrelatedyeastproteomesbyusingsupervisedbigdataclassifiers |