Cargando…

Effects of intestinal colonization by Clostridium difficile and Staphylococcus aureus on microbiota diversity in healthy individuals in China

BACKGROUND: Intestinal colonization by pathogenic bacteria is a risk factor for infection, and contributes to environmental contamination and disease dissemination. Alteration of gut microbiota also plays a pivotal role in the development of disease. Although Clostridium difficile and Staphylococcus...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Danfeng, Ni, Qi, Wang, Chen, Zhang, Lihua, Li, Zhen, Jiang, Cen, EnqiangMao, Peng, Yibing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934869/
https://www.ncbi.nlm.nih.gov/pubmed/29724187
http://dx.doi.org/10.1186/s12879-018-3111-z
Descripción
Sumario:BACKGROUND: Intestinal colonization by pathogenic bacteria is a risk factor for infection, and contributes to environmental contamination and disease dissemination. Alteration of gut microbiota also plays a pivotal role in the development of disease. Although Clostridium difficile and Staphylococcus aureus are well-recognized pathogens causing nosocomial and community infections, the intestinal colonization was not fully investigated. Herein, we explored their overall carriage rates in healthy adults from the community, and characterized the gut microbiomes of C. difficile and S. aureus carriers. METHODS: Fecal samples were collected from 1709 healthy volunteers from communities in Shanghai, China, and tested for the presence of C. difficile, methicillin-sensitive S. aureus (MSSA), and methicillin-resistant S. aureus (MRSA) using culture-based techniques. To explore differences in the gut microbiome, 16S rRNA gene sequencing was conducted using samples from non-carriers (CH), C. difficile carriers (CCD), MRSA carriers (CM), and MSSA carriers (CS). RESULTS: Overall, we detected 12 C. difficile and 60 S. aureus isolates, accounting for 0.70% and 3.51% of total isolates, respectively. Eight isolates were determined to be MRSA, accounting for 13.3% of the S. aureus population. Sequencing data revealed that the microbial diversity and richness were similar among the four groups. However, at the phylum level, carriage of C. difficile or MRSA was associated with a paucity of Bacteroidetes and an overabundance of Proteobacteria compared with non-carriers. At the genus level, the prevalence of the genera Bacteroides, Prevotella, Faecalibacterium, and Roseburia was decreased in C. difficile-positive samples compared with the controls, while the proportion of Clostridium cluster XIVa species was increased. MRSA carriers exhibited a higher proportion of the genera Parasutterella and Klebsiella, but a decreased prevalence of Bacteroides. Compared with MSSA carriers, Klebsiella was the only genus found to be significantly enriched in MRSA carriers. CONCLUSIONS: In healthy adults, colonization by C. difficile or S. aureus did not significantly affect gut microbiota diversity. However, the alteration of the gut microbiota composition in C. difficile carriers could indicate a predisposition to further infection. Our study provides essential data on the prevalence and effects of C. difficile and S. aureus colonization on gut microbiota composition in healthy adults. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12879-018-3111-z) contains supplementary material, which is available to authorized users.