Cargando…
Mitotic kinesins in action: diffusive searching, directional switching, and ensemble coordination
Mitotic spindle assembly requires the collective action of multiple microtubule motors that coordinate their activities in ensembles. However, despite significant advances in our understanding of mitotic kinesins at the single-motor level, multi-motor systems are challenging to reconstitute in vitro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935065/ https://www.ncbi.nlm.nih.gov/pubmed/29757705 http://dx.doi.org/10.1091/mbc.E17-10-0612 |
Sumario: | Mitotic spindle assembly requires the collective action of multiple microtubule motors that coordinate their activities in ensembles. However, despite significant advances in our understanding of mitotic kinesins at the single-motor level, multi-motor systems are challenging to reconstitute in vitro and thus less well understood. Recent findings highlighted in this perspective demonstrate how various properties of kinesin-5 and -14 motors—diffusive searching, directional switching, and multivalent interactions—allow them to achieve their physiological roles of cross-linking parallel microtubules and sliding antiparallel ones during cell division. Additionally, we highlight new experimental techniques that will help bridge the gap between in vitro biophysical studies and in vivo cell biology investigations and provide new insights into how specific single-molecule mechanisms generate complex cellular behaviors. |
---|