Cargando…
Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition
Individual risk of type 2 diabetes (T2D) is modified by perturbations of adipose mass, distribution and function. To investigate mechanisms responsible, we explored the molecular, cellular, and whole-body effects of T2D-associated alleles near KLF14. We show that KLF14 diabetes-risk alleles act in a...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935235/ https://www.ncbi.nlm.nih.gov/pubmed/29632379 http://dx.doi.org/10.1038/s41588-018-0088-x |
Sumario: | Individual risk of type 2 diabetes (T2D) is modified by perturbations of adipose mass, distribution and function. To investigate mechanisms responsible, we explored the molecular, cellular, and whole-body effects of T2D-associated alleles near KLF14. We show that KLF14 diabetes-risk alleles act in adipose tissue to reduce KLF14 expression, and modulate, in trans, expression of 385 genes. We demonstrate that, in human cellular studies, reduced KLF14 expression increases pre-adipocyte proliferation but disrupts lipogenesis, and, in mice, adipose-specific deletion of Klf14 partially recapitulates the human phenotype of insulin resistance, dyslipidemia and T2D. We show that KLF14 T2D risk-allele carriers shift body fat from gynoid to abdominal stores, and display a marked increase in adipocyte cell size: these effects on fat distribution, and the T2D-association, are female-specific. Metabolic risk associated with variation at this imprinted locus depends on both the sex of the subject, and of the parent from whom the risk-allele derives. |
---|