Cargando…
An improved advertising CTR prediction approach based on the fuzzy deep neural network
Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from adv...
Autores principales: | Jiang, Zilong, Gao, Shu, Li, Mingjiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935396/ https://www.ncbi.nlm.nih.gov/pubmed/29727443 http://dx.doi.org/10.1371/journal.pone.0190831 |
Ejemplares similares
-
A New Approach for Advertising CTR Prediction Based on Deep Neural Network via Attention Mechanism
por: Wang, Qianqian, et al.
Publicado: (2018) -
A CTR prediction model based on session interest
por: Wang, Qianqian, et al.
Publicado: (2022) -
An Intelligent Health Monitoring Model Based on Fuzzy Deep Neural Network
por: Xing, Tianye, et al.
Publicado: (2022) -
Advertising Click-Through Rate Prediction Based on CNN-LSTM Neural Network
por: Zhu, Danqing
Publicado: (2021) -
Copper-Dependent Trafficking of the Ctr4-Ctr5 Copper Transporting Complex
por: Ioannoni, Raphaël, et al.
Publicado: (2010)