Cargando…
Applications and efficiencies of the first cat 63K DNA array
The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the mos...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935720/ https://www.ncbi.nlm.nih.gov/pubmed/29728693 http://dx.doi.org/10.1038/s41598-018-25438-0 |
_version_ | 1783320316209004544 |
---|---|
author | Gandolfi, Barbara Alhaddad, Hasan Abdi, Mona Bach, Leslie H. Creighton, Erica K. Davis, Brian W. Decker, Jared E. Dodman, Nicholas H. Ginns, Edward I. Grahn, Jennifer C. Grahn, Robert A. Haase, Bianca Haggstrom, Jens Hamilton, Michael J. Helps, Christopher R. Kurushima, Jennifer D. Lohi, Hannes Longeri, Maria Malik, Richard Meurs, Kathryn M. Montague, Michael J. Mullikin, James C. Murphy, William J. Nilson, Sara M. Pedersen, Niels C. Peterson, Carlyn B. Rusbridge, Clare Saif, Rashid Shelton, G. Diane Warren, Wesley C. Wasim, Muhammad Lyons, Leslie A. |
author_facet | Gandolfi, Barbara Alhaddad, Hasan Abdi, Mona Bach, Leslie H. Creighton, Erica K. Davis, Brian W. Decker, Jared E. Dodman, Nicholas H. Ginns, Edward I. Grahn, Jennifer C. Grahn, Robert A. Haase, Bianca Haggstrom, Jens Hamilton, Michael J. Helps, Christopher R. Kurushima, Jennifer D. Lohi, Hannes Longeri, Maria Malik, Richard Meurs, Kathryn M. Montague, Michael J. Mullikin, James C. Murphy, William J. Nilson, Sara M. Pedersen, Niels C. Peterson, Carlyn B. Rusbridge, Clare Saif, Rashid Shelton, G. Diane Warren, Wesley C. Wasim, Muhammad Lyons, Leslie A. |
author_sort | Gandolfi, Barbara |
collection | PubMed |
description | The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array’s genotypes and its utility in performing population-based analyses were evaluated. Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed a Western to Eastern structural continuum of cat breeds. Genome-wide linkage disequilibrium ranged from 50–1,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris). Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes. The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations. |
format | Online Article Text |
id | pubmed-5935720 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-59357202018-05-10 Applications and efficiencies of the first cat 63K DNA array Gandolfi, Barbara Alhaddad, Hasan Abdi, Mona Bach, Leslie H. Creighton, Erica K. Davis, Brian W. Decker, Jared E. Dodman, Nicholas H. Ginns, Edward I. Grahn, Jennifer C. Grahn, Robert A. Haase, Bianca Haggstrom, Jens Hamilton, Michael J. Helps, Christopher R. Kurushima, Jennifer D. Lohi, Hannes Longeri, Maria Malik, Richard Meurs, Kathryn M. Montague, Michael J. Mullikin, James C. Murphy, William J. Nilson, Sara M. Pedersen, Niels C. Peterson, Carlyn B. Rusbridge, Clare Saif, Rashid Shelton, G. Diane Warren, Wesley C. Wasim, Muhammad Lyons, Leslie A. Sci Rep Article The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array’s genotypes and its utility in performing population-based analyses were evaluated. Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed a Western to Eastern structural continuum of cat breeds. Genome-wide linkage disequilibrium ranged from 50–1,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris). Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes. The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations. Nature Publishing Group UK 2018-05-04 /pmc/articles/PMC5935720/ /pubmed/29728693 http://dx.doi.org/10.1038/s41598-018-25438-0 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Gandolfi, Barbara Alhaddad, Hasan Abdi, Mona Bach, Leslie H. Creighton, Erica K. Davis, Brian W. Decker, Jared E. Dodman, Nicholas H. Ginns, Edward I. Grahn, Jennifer C. Grahn, Robert A. Haase, Bianca Haggstrom, Jens Hamilton, Michael J. Helps, Christopher R. Kurushima, Jennifer D. Lohi, Hannes Longeri, Maria Malik, Richard Meurs, Kathryn M. Montague, Michael J. Mullikin, James C. Murphy, William J. Nilson, Sara M. Pedersen, Niels C. Peterson, Carlyn B. Rusbridge, Clare Saif, Rashid Shelton, G. Diane Warren, Wesley C. Wasim, Muhammad Lyons, Leslie A. Applications and efficiencies of the first cat 63K DNA array |
title | Applications and efficiencies of the first cat 63K DNA array |
title_full | Applications and efficiencies of the first cat 63K DNA array |
title_fullStr | Applications and efficiencies of the first cat 63K DNA array |
title_full_unstemmed | Applications and efficiencies of the first cat 63K DNA array |
title_short | Applications and efficiencies of the first cat 63K DNA array |
title_sort | applications and efficiencies of the first cat 63k dna array |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935720/ https://www.ncbi.nlm.nih.gov/pubmed/29728693 http://dx.doi.org/10.1038/s41598-018-25438-0 |
work_keys_str_mv | AT gandolfibarbara applicationsandefficienciesofthefirstcat63kdnaarray AT alhaddadhasan applicationsandefficienciesofthefirstcat63kdnaarray AT abdimona applicationsandefficienciesofthefirstcat63kdnaarray AT bachleslieh applicationsandefficienciesofthefirstcat63kdnaarray AT creightonericak applicationsandefficienciesofthefirstcat63kdnaarray AT davisbrianw applicationsandefficienciesofthefirstcat63kdnaarray AT deckerjarede applicationsandefficienciesofthefirstcat63kdnaarray AT dodmannicholash applicationsandefficienciesofthefirstcat63kdnaarray AT ginnsedwardi applicationsandefficienciesofthefirstcat63kdnaarray AT grahnjenniferc applicationsandefficienciesofthefirstcat63kdnaarray AT grahnroberta applicationsandefficienciesofthefirstcat63kdnaarray AT haasebianca applicationsandefficienciesofthefirstcat63kdnaarray AT haggstromjens applicationsandefficienciesofthefirstcat63kdnaarray AT hamiltonmichaelj applicationsandefficienciesofthefirstcat63kdnaarray AT helpschristopherr applicationsandefficienciesofthefirstcat63kdnaarray AT kurushimajenniferd applicationsandefficienciesofthefirstcat63kdnaarray AT lohihannes applicationsandefficienciesofthefirstcat63kdnaarray AT longerimaria applicationsandefficienciesofthefirstcat63kdnaarray AT malikrichard applicationsandefficienciesofthefirstcat63kdnaarray AT meurskathrynm applicationsandefficienciesofthefirstcat63kdnaarray AT montaguemichaelj applicationsandefficienciesofthefirstcat63kdnaarray AT mullikinjamesc applicationsandefficienciesofthefirstcat63kdnaarray AT murphywilliamj applicationsandefficienciesofthefirstcat63kdnaarray AT nilsonsaram applicationsandefficienciesofthefirstcat63kdnaarray AT pedersennielsc applicationsandefficienciesofthefirstcat63kdnaarray AT petersoncarlynb applicationsandefficienciesofthefirstcat63kdnaarray AT rusbridgeclare applicationsandefficienciesofthefirstcat63kdnaarray AT saifrashid applicationsandefficienciesofthefirstcat63kdnaarray AT sheltongdiane applicationsandefficienciesofthefirstcat63kdnaarray AT warrenwesleyc applicationsandefficienciesofthefirstcat63kdnaarray AT wasimmuhammad applicationsandefficienciesofthefirstcat63kdnaarray AT lyonslesliea applicationsandefficienciesofthefirstcat63kdnaarray |