Cargando…

Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators

Human–machine interfaces have benefited from the advent of wireless sensor networks and the internet of things, but rely on wearable/attachable electronics exhibiting stretchability, biocompatibility, and transmittance. Limited by weight and volume, wearable devices should be energy efficient and ev...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Younghoon, Cha, Seung Hee, Kim, Yong-Woo, Choi, Dukhyun, Sun, Jeong-Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935721/
https://www.ncbi.nlm.nih.gov/pubmed/29728600
http://dx.doi.org/10.1038/s41467-018-03954-x
Descripción
Sumario:Human–machine interfaces have benefited from the advent of wireless sensor networks and the internet of things, but rely on wearable/attachable electronics exhibiting stretchability, biocompatibility, and transmittance. Limited by weight and volume, wearable devices should be energy efficient and even self-powered. Here, we report practical approaches for obtaining a stably self-cleanable, transparent and attachable ionic communicator based on triboelectric nanogenerators. The communicator can be easily applied on human skin due to softness and chemically anchored robust layers. It functions as a means of real-time communication between humans and machines. Surface functionalization on the communicator by (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane improves sensitivity and makes the communicator electrically and optically stable due to the self-cleaning effect without sacrificing transmittance. This research may benefit the potential development of attachable ionics, self-powered sensor networks, and monitoring systems for biomechanical motion.