Cargando…

A Regional Scale Approach to Assessing Current and Potential Future Exposure to Tidal Inundation in Different Types of Estuaries

Broad scale assessments of impacts associated with sea level rise have mainly been undertaken using ocean water level data from tide gauges located in harbours and ports assuming that these can be applied directly in mapping inundation throughout estuaries. On many coasts, however, exposure to sea l...

Descripción completa

Detalles Bibliográficos
Autores principales: Hanslow, David J., Morris, Bradley D., Foulsham, Edwina, Kinsela, Michael A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935728/
https://www.ncbi.nlm.nih.gov/pubmed/29728624
http://dx.doi.org/10.1038/s41598-018-25410-y
Descripción
Sumario:Broad scale assessments of impacts associated with sea level rise have mainly been undertaken using ocean water level data from tide gauges located in harbours and ports assuming that these can be applied directly in mapping inundation throughout estuaries. On many coasts, however, exposure to sea level rise comes about through inundation adjacent to rivers and estuaries, in many instances far from the ocean. In this study, we examine the potential impacts of sea level rise within the diverse estuaries of South East Australia. We use an extensive and long-term water level data set, which show that water levels within the different types of estuaries vary from ocean water levels. We map potential inundation scenarios for each estuary using an approach which improves on the commonly used bath tub method by allowing for variation in tidal processes both between and along estuaries. We identify considerable exposure to future sea level rise, and variable suitability of the bath tub method within different estuaries. Exposure is particularly high around tidal lake systems, where reduced tidal ranges have allowed development to occur in relative proximity to present sea level, and around larger coastal rivers, which feature extensive low-lying plains exposed to potential inundation.