Cargando…

Bioactive polydimethylsiloxane surface for optimal human mesenchymal stem cell sheet culture

Human mesenchymal stem cell (hMSC) sheets hold great potential in engineering three-dimensional (3D) completely biological tissues for diverse applications. Conventional cell sheet culturing methods employing thermoresponsive surfaces are cost ineffective, and rely heavily on available facilities. I...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Zichen, Ross, David, Jia, Wenkai, Xing, Qi, Zhao, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935775/
https://www.ncbi.nlm.nih.gov/pubmed/29744454
http://dx.doi.org/10.1016/j.bioactmat.2018.01.005
Descripción
Sumario:Human mesenchymal stem cell (hMSC) sheets hold great potential in engineering three-dimensional (3D) completely biological tissues for diverse applications. Conventional cell sheet culturing methods employing thermoresponsive surfaces are cost ineffective, and rely heavily on available facilities. In this study, a cost-effective method of layer-by-layer grafting was utilized for covalently binding a homogenous collagen I layer on a commonly used polydimethylsiloxane (PDMS) substrate surface in order to improve its cell adhesion as well as the uniformity of the resulting hMSC cell sheet. Results showed that a homogenous collagen I layer was obtained via this grafting method, which improved hMSC adhesion and attachment through reliable collagen I binding sites. By utilizing this low-cost method, a uniform hMSC sheet was generated. This technology potentially allows for mass production of hMSC sheets to fulfill the demand of thick hMSC constructs for tissue engineering and biomanufacturing applications.