Cargando…

Identification of potential pathogenic genes associated with osteoporosis

OBJECTIVES: Osteoporosis is a chronic disease. The aim of this study was to identify key genes in osteoporosis. METHODS: Microarray data sets GSE56815 and GSE56814, comprising 67 osteoporosis blood samples and 62 control blood samples, were obtained from the Gene Expression Omnibus database. Differe...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, B., Li, Y., Zhou, J., Tian, B., Feng, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935809/
https://www.ncbi.nlm.nih.gov/pubmed/29203636
http://dx.doi.org/10.1302/2046-3758.612.BJR-2017-0102.R1
Descripción
Sumario:OBJECTIVES: Osteoporosis is a chronic disease. The aim of this study was to identify key genes in osteoporosis. METHODS: Microarray data sets GSE56815 and GSE56814, comprising 67 osteoporosis blood samples and 62 control blood samples, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in osteoporosis using Limma package (3.2.1) and Meta-MA packages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify biological functions. Furthermore, the transcriptional regulatory network was established between the top 20 DEGs and transcriptional factors using the UCSC ENCODE Genome Browser. Receiver operating characteristic (ROC) analysis was applied to investigate the diagnostic value of several DEGs. RESULTS: A total of 1320 DEGs were obtained, of which 855 were up-regulated and 465 were down-regulated. These differentially expressed genes were enriched in Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, mainly associated with gene expression and osteoclast differentiation. In the transcriptional regulatory network, there were 6038 interactions pairs involving 88 transcriptional factors. In addition, the quantitative reverse transcriptase-polymerase chain reaction result validated the expression of several genes (VPS35, FCGR2A, TBCA, HIRA, TYROBP, and JUND). Finally, ROC analyses showed that VPS35, HIRA, PHF20 and NFKB2 had a significant diagnostic value for osteoporosis. CONCLUSION: Genes such as VPS35, FCGR2A, TBCA, HIRA, TYROBP, JUND, PHF20, NFKB2, RPL35A and BICD2 may be considered to be potential pathogenic genes of osteoporosis and may be useful for further study of the mechanisms underlying osteoporosis. Cite this article: B. Xia, Y. Li, J. Zhou, B. Tian, L. Feng. Identification of potential pathogenic genes associated with osteoporosis. Bone Joint Res 2017;6:640–648. DOI: 10.1302/2046-3758.612.BJR-2017-0102.R1.