Cargando…
Ensemble outlier detection and gene selection in triple-negative breast cancer data
BACKGROUND: Learning accurate models from ‘omics data is bringing many challenges due to their inherent high-dimensionality, e.g. the number of gene expression variables, and comparatively lower sample sizes, which leads to ill-posed inverse problems. Furthermore, the presence of outliers, either ex...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5936001/ https://www.ncbi.nlm.nih.gov/pubmed/29728051 http://dx.doi.org/10.1186/s12859-018-2149-7 |
_version_ | 1783320373921579008 |
---|---|
author | Lopes, Marta B. Veríssimo, André Carrasquinha, Eunice Casimiro, Sandra Beerenwinkel, Niko Vinga, Susana |
author_facet | Lopes, Marta B. Veríssimo, André Carrasquinha, Eunice Casimiro, Sandra Beerenwinkel, Niko Vinga, Susana |
author_sort | Lopes, Marta B. |
collection | PubMed |
description | BACKGROUND: Learning accurate models from ‘omics data is bringing many challenges due to their inherent high-dimensionality, e.g. the number of gene expression variables, and comparatively lower sample sizes, which leads to ill-posed inverse problems. Furthermore, the presence of outliers, either experimental errors or interesting abnormal clinical cases, may severely hamper a correct classification of patients and the identification of reliable biomarkers for a particular disease. We propose to address this problem through an ensemble classification setting based on distinct feature selection and modeling strategies, including logistic regression with elastic net regularization, Sparse Partial Least Squares - Discriminant Analysis (SPLS-DA) and Sparse Generalized PLS (SGPLS), coupled with an evaluation of the individuals’ outlierness based on the Cook’s distance. The consensus is achieved with the Rank Product statistics corrected for multiple testing, which gives a final list of sorted observations by their outlierness level. RESULTS: We applied this strategy for the classification of Triple-Negative Breast Cancer (TNBC) RNA-Seq and clinical data from the Cancer Genome Atlas (TCGA). The detected 24 outliers were identified as putative mislabeled samples, corresponding to individuals with discrepant clinical labels for the HER2 receptor, but also individuals with abnormal expression values of ER, PR and HER2, contradictory with the corresponding clinical labels, which may invalidate the initial TNBC label. Moreover, the model consensus approach leads to the selection of a set of genes that may be linked to the disease. These results are robust to a resampling approach, either by selecting a subset of patients or a subset of genes, with a significant overlap of the outlier patients identified. CONCLUSIONS: The proposed ensemble outlier detection approach constitutes a robust procedure to identify abnormal cases and consensus covariates, which may improve biomarker selection for precision medicine applications. The method can also be easily extended to other regression models and datasets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2149-7) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5936001 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-59360012018-05-11 Ensemble outlier detection and gene selection in triple-negative breast cancer data Lopes, Marta B. Veríssimo, André Carrasquinha, Eunice Casimiro, Sandra Beerenwinkel, Niko Vinga, Susana BMC Bioinformatics Research Article BACKGROUND: Learning accurate models from ‘omics data is bringing many challenges due to their inherent high-dimensionality, e.g. the number of gene expression variables, and comparatively lower sample sizes, which leads to ill-posed inverse problems. Furthermore, the presence of outliers, either experimental errors or interesting abnormal clinical cases, may severely hamper a correct classification of patients and the identification of reliable biomarkers for a particular disease. We propose to address this problem through an ensemble classification setting based on distinct feature selection and modeling strategies, including logistic regression with elastic net regularization, Sparse Partial Least Squares - Discriminant Analysis (SPLS-DA) and Sparse Generalized PLS (SGPLS), coupled with an evaluation of the individuals’ outlierness based on the Cook’s distance. The consensus is achieved with the Rank Product statistics corrected for multiple testing, which gives a final list of sorted observations by their outlierness level. RESULTS: We applied this strategy for the classification of Triple-Negative Breast Cancer (TNBC) RNA-Seq and clinical data from the Cancer Genome Atlas (TCGA). The detected 24 outliers were identified as putative mislabeled samples, corresponding to individuals with discrepant clinical labels for the HER2 receptor, but also individuals with abnormal expression values of ER, PR and HER2, contradictory with the corresponding clinical labels, which may invalidate the initial TNBC label. Moreover, the model consensus approach leads to the selection of a set of genes that may be linked to the disease. These results are robust to a resampling approach, either by selecting a subset of patients or a subset of genes, with a significant overlap of the outlier patients identified. CONCLUSIONS: The proposed ensemble outlier detection approach constitutes a robust procedure to identify abnormal cases and consensus covariates, which may improve biomarker selection for precision medicine applications. The method can also be easily extended to other regression models and datasets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2149-7) contains supplementary material, which is available to authorized users. BioMed Central 2018-05-04 /pmc/articles/PMC5936001/ /pubmed/29728051 http://dx.doi.org/10.1186/s12859-018-2149-7 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Lopes, Marta B. Veríssimo, André Carrasquinha, Eunice Casimiro, Sandra Beerenwinkel, Niko Vinga, Susana Ensemble outlier detection and gene selection in triple-negative breast cancer data |
title | Ensemble outlier detection and gene selection in triple-negative breast cancer data |
title_full | Ensemble outlier detection and gene selection in triple-negative breast cancer data |
title_fullStr | Ensemble outlier detection and gene selection in triple-negative breast cancer data |
title_full_unstemmed | Ensemble outlier detection and gene selection in triple-negative breast cancer data |
title_short | Ensemble outlier detection and gene selection in triple-negative breast cancer data |
title_sort | ensemble outlier detection and gene selection in triple-negative breast cancer data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5936001/ https://www.ncbi.nlm.nih.gov/pubmed/29728051 http://dx.doi.org/10.1186/s12859-018-2149-7 |
work_keys_str_mv | AT lopesmartab ensembleoutlierdetectionandgeneselectionintriplenegativebreastcancerdata AT verissimoandre ensembleoutlierdetectionandgeneselectionintriplenegativebreastcancerdata AT carrasquinhaeunice ensembleoutlierdetectionandgeneselectionintriplenegativebreastcancerdata AT casimirosandra ensembleoutlierdetectionandgeneselectionintriplenegativebreastcancerdata AT beerenwinkelniko ensembleoutlierdetectionandgeneselectionintriplenegativebreastcancerdata AT vingasusana ensembleoutlierdetectionandgeneselectionintriplenegativebreastcancerdata |