Cargando…

Protein Kinase Serine/Threonine Kinase 24 Positively Regulates Interleukin 17-Induced Inflammation by Promoting IKK Complex Activation

Interleukin 17 (IL-17) is a key inflammatory cytokine that plays a critical role in tissue inflammation and autoimmune diseases. However, its signaling remains poorly understood. In this study, we identified serine/threonine kinase 24 (Stk24) as a positive modulator of IL-17-mediated signaling and i...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Yu, Tian, Miao, Lin, Wenlong, Wang, Xinyuan, Wang, Xiaojian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5936754/
https://www.ncbi.nlm.nih.gov/pubmed/29760709
http://dx.doi.org/10.3389/fimmu.2018.00921
Descripción
Sumario:Interleukin 17 (IL-17) is a key inflammatory cytokine that plays a critical role in tissue inflammation and autoimmune diseases. However, its signaling remains poorly understood. In this study, we identified serine/threonine kinase 24 (Stk24) as a positive modulator of IL-17-mediated signaling and inflammation. Stk24 deficiency or knockdown markedly inhibited IL-17-induced phosphorylation of NF-κB and impaired IL-17-induced chemokines and cytokines expression. Stk24 overexpression greatly enhanced IL-17-induced NF-κB activation and expression of chemokines and cytokines in a kinase activity-independent manner. The IL-17-induced inflammatory response was significantly reduced in Stk24-deficient mice. In addition, the severity of experimental autoimmune encephalomyelitis was markedly reduced in mice with a deficiency of Stk24 in non-hematopoietic cells. We further demonstrated that Stk24 directly interacts with TAK1 and IKKβ and promotes the formation of TAK1/IKK complexes, leading to enhanced IKKβ/NF-κB activation and downstream cytokines and chemokines induction. Collectively, our findings suggest that Stk24 plays an important role in controlling IL-17-triggered inflammation and autoimmune diseases and provides new insight into the therapeutic targets of IL-17-mediated inflammatory disease.