Cargando…

Behavioural divergence during biological invasions: a study of cane toads (Rhinella marina) from contrasting environments in Hawai'i

Invasive species must deal with novel challenges, both from the alien environment and from pressures arising from range expansion per se (e.g. spatial sorting). Those conditions can create geographical variation in behaviour across the invaded range, as has been documented across regions of Australi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gruber, Jodie, Brown, Gregory, Whiting, Martin J., Shine, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5936961/
https://www.ncbi.nlm.nih.gov/pubmed/29765696
http://dx.doi.org/10.1098/rsos.180197
Descripción
Sumario:Invasive species must deal with novel challenges, both from the alien environment and from pressures arising from range expansion per se (e.g. spatial sorting). Those conditions can create geographical variation in behaviour across the invaded range, as has been documented across regions of Australia invaded by cane toads; range-edge toads are more exploratory and willing to take risks than are conspecifics from the range-core. That behavioural divergence might be a response to range expansion and invasion per se, or to the different environments encountered. Climate differs across the cane toads' invasion range from the wet tropics of Queensland to the seasonally dry climates of northwestern Western Australia. The different thermal and hydric regimes may affect behavioural traits via phenotypic plasticity or through natural selection. We cannot tease apart the effects of range expansion versus climate in an expanding population but can do so in a site where the colonizing species was simultaneously released in all suitable areas, thus removing any subsequent phase of range expansion. Cane toads were introduced to Hawai'i in 1932; and thence to Australia in 1935. Toads were released in all major sugarcane-growing areas in Hawai'i within a 12-month period. Hence, Hawai'ian cane toads provide an opportunity to examine geographical divergence in behavioural traits in a climatically diverse region (each island has both wet and dry sides) in the absence of range expansion subsequent to release. We conducted laboratory-based behavioural trials testing exploration, risk-taking and response to novelty using field-caught toads from the wet and dry sides of two Hawai'ian islands (Oahu and Hawai'i). Toads from the dry side of Oahu had a higher propensity to take risks than did toads from the dry side of Hawai'i. Toads from Oahu were also more exploratory than were conspecifics from the island of Hawai'i. However, toads from wet versus dry climates were similar in all behaviours that we scored, suggesting that founder effects, genetic drift, or developmentally plastic responses to ecological factors other than climate may have driven behavioural divergence between islands.