Cargando…

Discrimination and Recognition of Phantom Finger Sensation Through Transcutaneous Electrical Nerve Stimulation

Tactile sensory feedback would make a significant contribution to the state-of-the-art prosthetic hands for achieving dexterous manipulation over objects. Phantom finger sensation, also called referred sensation of lost fingers, can be noninvasively evoked by transcutaneous electrical nerve stimulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Mengnan, Zhang, Dingguo, Chen, Yao, Chai, Xinyu, He, Longwen, Chen, Ying, Guo, Jinyao, Sui, Xiaohong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937010/
https://www.ncbi.nlm.nih.gov/pubmed/29760647
http://dx.doi.org/10.3389/fnins.2018.00283
_version_ 1783320560172793856
author Li, Mengnan
Zhang, Dingguo
Chen, Yao
Chai, Xinyu
He, Longwen
Chen, Ying
Guo, Jinyao
Sui, Xiaohong
author_facet Li, Mengnan
Zhang, Dingguo
Chen, Yao
Chai, Xinyu
He, Longwen
Chen, Ying
Guo, Jinyao
Sui, Xiaohong
author_sort Li, Mengnan
collection PubMed
description Tactile sensory feedback would make a significant contribution to the state-of-the-art prosthetic hands for achieving dexterous manipulation over objects. Phantom finger sensation, also called referred sensation of lost fingers, can be noninvasively evoked by transcutaneous electrical nerve stimulation (TENS) of the phantom finger territories (PFTs) near the stump for upper-limb amputees. As such, intuitive sensations pertaining to lost fingers could be non-invasively generated. However, the encoding of stimulation parameters into tactile sensations that can be intuitively interpreted by the users remains a significant challenge. Further, how discriminative such artificial tactile sensation with TENS of the PFTs is still unknown. In this study, we systematically characterized the tactile discrimination across different phantom fingers on the stump skin by TENS among six subjects. Charge-balanced and biphasic stimulating current pulses were adopted. The pulse amplitude (PA), the pulse frequency (PF) and the pulse width (PW) were modulated to evaluate the detection threshold, perceived touch intensity, and the just-noticeable difference (JND) of the phantom finger sensation. Particularly, the recognition of phantom fingers under simultaneous stimulation was assessed. The psychophysical experiments revealed that subjects could discern fine variations of stimuli with comfortable sensation of phantom fingers including D1 (phantom thumb), D2 (phantom index finger), D3 (Phantom middle finger), and D5 (Phantom pinky finger). With respect to PA, PF, and PW modulations, the detection thresholds across the four phantom fingers were achieved by the method of constant stimuli based on a two-alternative forced-choice (2AFC) paradigm. For each modulation, the perceived intensity, which was indexed by skin indentations on the contralateral intact finger pulp, reinforced gradually with enhancing stimuli within lower-intensity range. Particularly, the curve of the indentation depth vs. PF almost reached a plateau with PF more than 200 Hz. Moreover, the performance of phantom finger recognition deteriorated with the increasing number of phantom fingers under simultaneous TENS. For one, two and four stimulating channels, the corresponding recognition rate of an individual PFT were respective 85.83, 67.67, and 46.44%. The results of the present work would provide direct guidelines regarding the optimization of stimulating strategies to deliver artificial tactile sensation by TENS for clinical applications.
format Online
Article
Text
id pubmed-5937010
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-59370102018-05-14 Discrimination and Recognition of Phantom Finger Sensation Through Transcutaneous Electrical Nerve Stimulation Li, Mengnan Zhang, Dingguo Chen, Yao Chai, Xinyu He, Longwen Chen, Ying Guo, Jinyao Sui, Xiaohong Front Neurosci Neuroscience Tactile sensory feedback would make a significant contribution to the state-of-the-art prosthetic hands for achieving dexterous manipulation over objects. Phantom finger sensation, also called referred sensation of lost fingers, can be noninvasively evoked by transcutaneous electrical nerve stimulation (TENS) of the phantom finger territories (PFTs) near the stump for upper-limb amputees. As such, intuitive sensations pertaining to lost fingers could be non-invasively generated. However, the encoding of stimulation parameters into tactile sensations that can be intuitively interpreted by the users remains a significant challenge. Further, how discriminative such artificial tactile sensation with TENS of the PFTs is still unknown. In this study, we systematically characterized the tactile discrimination across different phantom fingers on the stump skin by TENS among six subjects. Charge-balanced and biphasic stimulating current pulses were adopted. The pulse amplitude (PA), the pulse frequency (PF) and the pulse width (PW) were modulated to evaluate the detection threshold, perceived touch intensity, and the just-noticeable difference (JND) of the phantom finger sensation. Particularly, the recognition of phantom fingers under simultaneous stimulation was assessed. The psychophysical experiments revealed that subjects could discern fine variations of stimuli with comfortable sensation of phantom fingers including D1 (phantom thumb), D2 (phantom index finger), D3 (Phantom middle finger), and D5 (Phantom pinky finger). With respect to PA, PF, and PW modulations, the detection thresholds across the four phantom fingers were achieved by the method of constant stimuli based on a two-alternative forced-choice (2AFC) paradigm. For each modulation, the perceived intensity, which was indexed by skin indentations on the contralateral intact finger pulp, reinforced gradually with enhancing stimuli within lower-intensity range. Particularly, the curve of the indentation depth vs. PF almost reached a plateau with PF more than 200 Hz. Moreover, the performance of phantom finger recognition deteriorated with the increasing number of phantom fingers under simultaneous TENS. For one, two and four stimulating channels, the corresponding recognition rate of an individual PFT were respective 85.83, 67.67, and 46.44%. The results of the present work would provide direct guidelines regarding the optimization of stimulating strategies to deliver artificial tactile sensation by TENS for clinical applications. Frontiers Media S.A. 2018-04-30 /pmc/articles/PMC5937010/ /pubmed/29760647 http://dx.doi.org/10.3389/fnins.2018.00283 Text en Copyright © 2018 Li, Zhang, Chen, Chai, He, Chen, Guo and Sui. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Li, Mengnan
Zhang, Dingguo
Chen, Yao
Chai, Xinyu
He, Longwen
Chen, Ying
Guo, Jinyao
Sui, Xiaohong
Discrimination and Recognition of Phantom Finger Sensation Through Transcutaneous Electrical Nerve Stimulation
title Discrimination and Recognition of Phantom Finger Sensation Through Transcutaneous Electrical Nerve Stimulation
title_full Discrimination and Recognition of Phantom Finger Sensation Through Transcutaneous Electrical Nerve Stimulation
title_fullStr Discrimination and Recognition of Phantom Finger Sensation Through Transcutaneous Electrical Nerve Stimulation
title_full_unstemmed Discrimination and Recognition of Phantom Finger Sensation Through Transcutaneous Electrical Nerve Stimulation
title_short Discrimination and Recognition of Phantom Finger Sensation Through Transcutaneous Electrical Nerve Stimulation
title_sort discrimination and recognition of phantom finger sensation through transcutaneous electrical nerve stimulation
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937010/
https://www.ncbi.nlm.nih.gov/pubmed/29760647
http://dx.doi.org/10.3389/fnins.2018.00283
work_keys_str_mv AT limengnan discriminationandrecognitionofphantomfingersensationthroughtranscutaneouselectricalnervestimulation
AT zhangdingguo discriminationandrecognitionofphantomfingersensationthroughtranscutaneouselectricalnervestimulation
AT chenyao discriminationandrecognitionofphantomfingersensationthroughtranscutaneouselectricalnervestimulation
AT chaixinyu discriminationandrecognitionofphantomfingersensationthroughtranscutaneouselectricalnervestimulation
AT helongwen discriminationandrecognitionofphantomfingersensationthroughtranscutaneouselectricalnervestimulation
AT chenying discriminationandrecognitionofphantomfingersensationthroughtranscutaneouselectricalnervestimulation
AT guojinyao discriminationandrecognitionofphantomfingersensationthroughtranscutaneouselectricalnervestimulation
AT suixiaohong discriminationandrecognitionofphantomfingersensationthroughtranscutaneouselectricalnervestimulation