Cargando…

Nano Packaged Tamoxifen and Curcumin; Effective Formulation against Sensitive and Resistant MCF-7 Cells

Tamoxifen is routinely used for treatment of Estrogen-positive breast carcinoma. Approximately, 50% of patients with metastatic cancer will develop resistance to Tamoxifen. In this research, Tamoxifen was combined with the anti-cancer compound Curcumin. Diblocknanopolymer was used to package the new...

Descripción completa

Detalles Bibliográficos
Autores principales: Hajigholami, Samira, Veisi Malekshahi, Ziba, Bodaghabadi, Narges, Najafi, Farhod, Shirzad, Hadi, Sadeghizadeh, Majid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937073/
https://www.ncbi.nlm.nih.gov/pubmed/29755534
Descripción
Sumario:Tamoxifen is routinely used for treatment of Estrogen-positive breast carcinoma. Approximately, 50% of patients with metastatic cancer will develop resistance to Tamoxifen. In this research, Tamoxifen was combined with the anti-cancer compound Curcumin. Diblocknanopolymer was used to package the new formulation of Curcumin and Tamoxifen. Anti-cancer efficacy of the obtained compound was evaluated in Tamoxifen-sensitive (TS). MCF-7, Tamoxifen-resistant (TR) MCF-7 cancer cells and Fibroblast cells. MTT assay was used to evaluate anti-proliferation and toxicity. Flow cytometry and Annexin-V-FLUOS were used to assay anti-proliferation and induction of apoptosis respectively. Our results indicate that the obtained nano-compound is less toxic to normal cells compared to Tamoxifen alone, and has higher anti-proliferation and pro-apoptotic activity on TS-MCF-7 and TR-MCF-7. The nanopolymer reduces the Tamoxifen toxicity in normal cells and counters the developed resistance to the drug in cancer cells.