Cargando…

SCENIC: Single-cell regulatory network inference and clustering

Although single-cell RNA-seq is revolutionizing biology, data interpretation remains a challenge. We present SCENIC for the simultaneous reconstruction of gene regulatory networks and identification of cell states. We apply SCENIC to a compendium of single-cell data from tumors and brain, and demons...

Descripción completa

Detalles Bibliográficos
Autores principales: Aibar, Sara, González-Blas, Carmen Bravo, Moerman, Thomas, Huynh-Thu, Vân Anh, Imrichova, Hana, Hulselmans, Gert, Rambow, Florian, Marine, Jean-Christophe, Geurts, Pierre, Aerts, Jan, van den Oord, Joost, Atak, Zeynep Kalender, Wouters, Jasper, Aerts, Stein
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937676/
https://www.ncbi.nlm.nih.gov/pubmed/28991892
http://dx.doi.org/10.1038/nmeth.4463
Descripción
Sumario:Although single-cell RNA-seq is revolutionizing biology, data interpretation remains a challenge. We present SCENIC for the simultaneous reconstruction of gene regulatory networks and identification of cell states. We apply SCENIC to a compendium of single-cell data from tumors and brain, and demonstrate that the genomic regulatory code can be exploited to guide the identification of transcription factors and cell states. SCENIC provides critical biological insights into the mechanisms driving cellular heterogeneity.