Cargando…

Allele and dosage specificity of the Peg3 imprinted domain

The biological impetus for gene dosage and allele specificity of mammalian imprinted genes is not fully understood. To address this, we generated and analyzed four sets of mice from a single breeding scheme with varying allelic expression and gene dosage of the Peg3 domain. The mutants with abrogati...

Descripción completa

Detalles Bibliográficos
Autores principales: Bretz, Corey L., Frey, Wesley D., Teruyama, Ryoichi, Kim, Joomyeong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937776/
https://www.ncbi.nlm.nih.gov/pubmed/29734399
http://dx.doi.org/10.1371/journal.pone.0197069
Descripción
Sumario:The biological impetus for gene dosage and allele specificity of mammalian imprinted genes is not fully understood. To address this, we generated and analyzed four sets of mice from a single breeding scheme with varying allelic expression and gene dosage of the Peg3 domain. The mutants with abrogation of the two paternally expressed genes, Peg3 and Usp29, showed a significant decrease in growth rates for both males and females, while the mutants with biallelic expression of Peg3 and Usp29 resulted in an increased growth rate of female mice only. The mutant cohort with biallelic expression of Peg3 and Usp29 tended to have greater numbers of pups compared to the other genotypes. The mutants with switched active alleles displayed overall similar phenotypes to the wild type, but did show some differences in gene expression, suggesting potential non-redundant roles contributed by the maternal and paternal alleles. Overall, this study demonstrates a novel in vivo approach to investigate the allele and dosage specificity of mammalian imprinted domains.