Cargando…

Synaptic and circuit development of the primary sensory cortex

Animals, including humans, optimize their primary sensory cortex through the use of input signals, which allow them to adapt to the external environment and survive. The time window at the beginning of life in which external input signals are connected sensitively and strongly to neural circuit opti...

Descripción completa

Detalles Bibliográficos
Autor principal: Choi, Se-Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938038/
https://www.ncbi.nlm.nih.gov/pubmed/29628505
http://dx.doi.org/10.1038/s12276-018-0029-x
Descripción
Sumario:Animals, including humans, optimize their primary sensory cortex through the use of input signals, which allow them to adapt to the external environment and survive. The time window at the beginning of life in which external input signals are connected sensitively and strongly to neural circuit optimization is called the critical period. The critical period has attracted the attention of many neuroscientists due to the rapid activity-/experience-dependent circuit development that occurs, which is clearly differentiated from other developmental time periods and brain areas. This process involves various types of GABAergic inhibitory neurons, the extracellular matrix, neuromodulators, transcription factors, and neurodevelopmental factors. In this review, I discuss recent progress regarding the biological nature of the critical period that contribute to a better understanding of brain development.